Changeset 17199
- Timestamp:
- 10/04/13 18:55:41 (11 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Mars/fact/analysis/gain/fit_spectra.C
r17194 r17199 18 18 #include "MArrayI.h" 19 19 #include "MRawRunHeader.h" 20 #include "PixelMap.h" 20 21 21 22 using namespace std; … … 31 32 const Double_t cross = par[3]; 32 33 const Double_t shift = par[4]; 33 const Double_t noise = par[5] ;34 const Double_t noise = par[5]<0 ? sigma : par[5]; 34 35 const Double_t expo = par[6]; 35 36 … … 67 68 const Double_t sigma = func.GetParameter(2)*func.GetParameter(1); 68 69 const Double_t cross = func.GetParameter(3); 69 const Double_t noise = func.GetParameter(5) ;70 const Double_t noise = func.GetParameter(5)<0 ? sigma : func.GetParameter(5); 70 71 const Double_t expo = func.GetParameter(6); 71 72 … … 94 95 cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl; 95 96 cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl; 96 cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl; 97 if (f.GetParameter(5)>=0) 98 cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl; 97 99 cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl; 98 100 //cout << "--------------------" << endl; … … 104 106 // The parameters for the function are the filenam from the gain extraction 105 107 // and the output filename 106 int fit_spectra(const char *filename = "20130222_018_018.root", 107 const char *outfile = "20120802_247_247-fit.root" ) 108 int fit_spectra(const char *filename = "20130222_018_018.root", 109 const char *outfile = "20130222_018_018-fit.root", 110 bool fixednoise=true) 108 111 { 112 // Read the mapping between bias channels and hardware channels 113 PixelMap pmap; 114 if (!pmap.Read("FACTmap111030.txt")) 115 { 116 cout << "FACTmap111030.txt not found." << endl; 117 return 1; 118 } 119 109 120 // It is more correct to fit the integral, but this is super 110 121 // slow, especially for 1440 pixel. To get that, one would have … … 223 234 224 235 // Set name and title for the histograms 225 cRate.SetNameTitle ("Rate", "Dark count rate");226 cGain.SetNameTitle ("Gain", "Gain distribution");227 cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma");228 cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability");229 cBaseline.SetNameTitle ("Baseline", "Baseline per sample");230 cNoise.SetNameTitle ("Noise", "Noise per sample");231 cChi2.SetNameTitle ("Chi2", "\\Chi^2");232 cNormGain.SetNameTitle ("NormGain", "Normalized gain");233 cFitProb.SetNameTitle ("FitProb", "Root's fit probability");234 cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P");235 cCoeffR.SetNameTitle ("CoeffR", "Coefficient R");236 cRate.SetNameTitle ("Rate", "Dark count rate"); 237 cGain.SetNameTitle ("Gain", "Gain distribution"); 238 cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma"); 239 cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability"); 240 cBaseline.SetNameTitle ("Baseline", "Baseline per sample"); 241 cNoise.SetNameTitle ("Noise", "Noise per sample"); 242 cChi2.SetNameTitle ("Chi2", "\\Chi^2"); 243 cNormGain.SetNameTitle ("NormGain", "Normalized gain"); 244 cFitProb.SetNameTitle ("FitProb", "Root's fit probability"); 245 cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P"); 246 cCoeffR.SetNameTitle ("CoeffR", "Coefficient R"); 236 247 237 248 // Instantiate 1D histograms for the distributions 238 TH1F hRate ("Rate", "Dark count rate", 150, 0, 15); 239 TH1F hGain ("Gain", "Gain distribution", 100, 0, 400); 240 TH1F hRelSigma ("RelSigma", "Rel. Sigma", 160, 0, 0.40); 241 TH1F hCrosstalk("Crosstalk", "Crosstalk probability", 90, 0, 0.30); 242 TH1F hBaseline ("Baseline", "Baseline per sample", 75, -7.5, 7.5); 243 TH1F hNoise ("Noise", "Noise per sample", 60, 0, 30); 244 TH1F hChi2 ("Chi2", "\\Chi^2", 200, 0, 4); 245 TH1F hNormGain ("NormGain", "Normalized gain", 51, 0.5, 1.5); 246 TH1F hFitProb ("FitProb", "FitProb distribution", 100, 0, 1); 247 TH1F hCrosstalkP("Pxtalk", "Crosstalk coeff.", 90, 0, 0.3); 248 TH1F hCoeffR ("CoeffR", "Coefficient R", 90, -1, 2); 249 // including TM channels 250 TH1F hRate1 ("Rate1", "Dark count rate", 150, 0, 15); 251 TH1F hGain1 ("Gain1", "Gain distribution", 100, 0, 400); 252 TH1F hRelSigma1 ("RelSigma1", "Rel. Sigma", 160, 0, 0.40); 253 TH1F hCrosstalk1 ("Crosstalk1", "Crosstalk probability", 90, 0, 0.30); 254 TH1F hBaseline1 ("Baseline1", "Baseline per sample", 75, -7.5, 7.5); 255 TH1F hNoise1 ("Noise1", "Noise per sample", 60, 0, 30); 256 TH1F hChiSq1 ("ChiSq1", "\\Chi^2", 200, 0, 4); 257 TH1F hNormGain1 ("NormGain1", "Normalized gain", 51, 0.5, 1.5); 258 TH1F hFitProb1 ("FitProb1", "FitProb distribution", 100, 0, 1); 259 TH1F hCrosstalkP1("Pxtalk1", "Crosstalk coeff.", 90, 0, 0.3); 260 TH1F hCoeffR1 ("CoeffR1", "Coefficient R", 90, -1, 2); 261 262 // excluding TM channels 263 TH1F hRate2 ("Rate2", "Dark count rate", 150, 0, 15); 264 TH1F hGain2 ("Gain2", "Gain distribution", 100, 0, 400); 265 TH1F hRelSigma2 ("RelSigma2", "Rel. Sigma", 160, 0, 0.40); 266 TH1F hCrosstalk2 ("Crosstalk2", "Crosstalk probability", 90, 0, 0.30); 267 TH1F hBaseline2 ("Baseline2", "Baseline per sample", 75, -7.5, 7.5); 268 TH1F hNoise2 ("Noise2", "Noise per sample", 60, 0, 30); 269 TH1F hChiSq2 ("ChiSq2", "\\Chi^2", 200, 0, 4); 270 TH1F hNormGain2 ("NormGain2", "Normalized gain", 51, 0.5, 1.5); 271 TH1F hFitProb2 ("FitProb2", "FitProb distribution", 100, 0, 1); 272 TH1F hCrosstalkP2("Pxtalk2", "Crosstalk coeff.", 90, 0, 0.3); 273 TH1F hCoeffR2 ("CoeffR2", "Coefficient R", 90, -1, 2); 249 274 250 275 // Histigram for the sum of all spectrums … … 257 282 258 283 // Histogram for the sum of all pixels excluding the ones with faulty fits 259 TH1F hSumClear("SumC", "Signal spectrum of all pixels", 260 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax()); 261 hSumClear.SetXTitle("pulse integral [mV sample]"); 262 hSumClear.SetYTitle("Counts"); 263 hSumClear.SetStats(false); 264 hSumClear.SetLineColor(kBlue); 265 hSumClear.Sumw2(); 284 TH1F hSumClear1("SumC1", "Signal spectrum of all pixels (incl TM)", 285 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax()); 286 hSumClear1.SetXTitle("pulse integral [mV sample]"); 287 hSumClear1.SetYTitle("Counts"); 288 hSumClear1.SetStats(false); 289 hSumClear1.SetLineColor(kBlue); 290 hSumClear1.Sumw2(); 291 292 TH1F hSumClear2("SumC2", "Signal spectrum of all pixels (excp TM)", 293 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax()); 294 hSumClear2.SetXTitle("pulse integral [mV sample]"); 295 hSumClear2.SetYTitle("Counts"); 296 hSumClear2.SetStats(false); 297 hSumClear2.SetLineColor(kBlue); 298 hSumClear2.Sumw2(); 266 299 267 300 // Arrival time spectrum of the extracted pulses … … 278 311 279 312 // Spektrum for the normalized individual spectra 280 TH1F hSumScale("Sum2", "Signal spectrum of all pixels", 120, 0.05, 12.05); 281 hSumScale.SetXTitle("pulse integral [pe]"); 282 hSumScale.SetYTitle("Rate"); 283 hSumScale.SetStats(false); 284 hSumScale.Sumw2(); 313 TH1F hSumScale1("SumScale1", "Signal spectrum of all pixels (incl TM)", 120, 0.05, 12.05); 314 hSumScale1.SetXTitle("pulse integral [pe]"); 315 hSumScale1.SetYTitle("Rate"); 316 hSumScale1.SetStats(false); 317 hSumScale1.Sumw2(); 318 319 TH1F hSumScale2("SumScale2", "Signal spectrum of all pixels (excl TM)", 120, 0.05, 12.05); 320 hSumScale2.SetXTitle("pulse integral [pe]"); 321 hSumScale2.SetYTitle("Rate"); 322 hSumScale2.SetStats(false); 323 hSumScale2.Sumw2(); 285 324 286 325 // define fit function for Amplitudespectrum … … 342 381 func.SetParLimits(2, 0, 1); // Sigma 343 382 func.SetParLimits(3, 0, 1); // Crosstalk 344 func.SetParLimits(5, 0, 150); // Noise 383 if (!fixednoise) 384 func.SetParLimits(5, 0, 150); // Noise 345 385 346 386 func.SetParameter(0, ampl); // Amplitude 347 387 func.SetParameter(1, maxpos); // Gain 348 388 func.SetParameter(2, 0.1); // Sigma 349 func.SetParameter(3, 0.1 5); // Crosstalk389 func.SetParameter(3, 0.16); // Crosstalk 350 390 func.SetParameter(4, 0*integration_window); // Baseline 351 func.SetParameter(5, 1.*sqrt(integration_window)); // Noise 391 if (fixednoise) 392 func.FixParameter(5, -1); // Noise 393 else 394 func.SetParameter(5, 0.1*maxpos); // Noise 395 352 396 func.SetParameter(6, 0.4); // Expo 353 397 … … 474 518 const float fCrosstlk = xtalk(func); 475 519 const float fOffset = func.GetParameter(4); 476 const float fNoise = func.GetParameter(5) /sqrt(integration_window);520 const float fNoise = func.GetParameter(5)<0 ? fGainRMS*fGain/sqrt(integration_window) : func.GetParameter(5)/sqrt(integration_window); 477 521 const float fCoeffR = func.GetParameter(6); 478 522 … … 549 593 550 594 // Fill Parameters into histograms 551 hRate.Fill( fRate); 552 hGain.Fill( fGain); 553 hRelSigma.Fill( fGainRMS); 554 hCrosstalk.Fill( fCrosstlk); 555 hBaseline.Fill( fOffset/integration_window); 556 hNoise.Fill( fNoise); 557 hChi2.Fill( chi2); 558 hNormGain.Fill( fGain/gain); 559 hFitProb.Fill( fit_prob); 560 hCrosstalkP.Fill(fCrosstalkP); 561 hCoeffR.Fill( fCoeffR); 595 hRate1.Fill( fRate); 596 hGain1.Fill( fGain); 597 hRelSigma1.Fill( fGainRMS); 598 hCrosstalk1.Fill( fCrosstlk); 599 hBaseline1.Fill( fOffset/integration_window); 600 hNoise1.Fill( fNoise); 601 hChiSq1.Fill( chi2); 602 hNormGain1.Fill( fGain/gain); 603 hFitProb1.Fill( fit_prob); 604 hCrosstalkP1.Fill(fCrosstalkP); 605 hCoeffR1.Fill( fCoeffR); 606 607 if (!pmap.index(pixel).isTM()) 608 { 609 hRate2.Fill( fRate); 610 hGain2.Fill( fGain); 611 hRelSigma2.Fill( fGainRMS); 612 hCrosstalk2.Fill( fCrosstlk); 613 hBaseline2.Fill( fOffset/integration_window); 614 hNoise2.Fill( fNoise); 615 hChiSq2.Fill( chi2); 616 hNormGain2.Fill( fGain/gain); 617 hFitProb2.Fill( fit_prob); 618 hCrosstalkP2.Fill(fCrosstalkP); 619 hCoeffR2.Fill( fCoeffR); 620 } 562 621 563 622 // Fill sum spectrum 564 623 for (int b=1; b<=hist->GetNbinsX(); b++) 565 hSumScale.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b)); 624 hSumScale1.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b)); 625 626 if (!pmap.index(pixel).isTM()) 627 for (int b=1; b<=hist->GetNbinsX(); b++) 628 hSumScale2.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b)); 629 566 630 delete hist; 567 631 568 632 // Because of the rebinning... 569 633 hist = hsignal->ProjectionY("proj", pixel+1, pixel+1); 570 hSumClear.Add(hist); 634 hSumClear1.Add(hist); 635 if (!pmap.index(pixel).isTM()) 636 hSumClear2.Add(hist); 571 637 delete hist; 572 638 … … 647 713 648 714 canv->cd(1); 649 hh = hRate.DrawCopy(); 715 hh = hRate1.DrawCopy(); 716 hh = hRate2.DrawCopy("same"); 650 717 651 718 canv->cd(2); 652 hh = hGain.DrawCopy(); 719 hh = hGain1.DrawCopy(); 720 hh = hGain2.DrawCopy("same"); 653 721 hh->Fit("gaus"); 654 722 655 723 canv->cd(3); 656 hh = hBaseline.DrawCopy(); 724 hh = hBaseline1.DrawCopy(); 725 hh = hBaseline2.DrawCopy("same"); 657 726 hh->Fit("gaus"); 658 727 659 728 canv->cd(4); 660 hh = hRelSigma.DrawCopy(); 729 hh = hRelSigma1.DrawCopy(); 730 hh = hRelSigma2.DrawCopy("same"); 661 731 hh->Fit("gaus"); 662 732 663 733 canv->cd(5); 664 hh = hCrosstalk.DrawCopy(); 734 hh = hCrosstalk1.DrawCopy(); 735 hh = hCrosstalk2.DrawCopy("same"); 665 736 hh->Fit("gaus"); 666 737 667 738 canv->cd(6); 668 hh = hNoise.DrawCopy(); 739 hh = hNoise1.DrawCopy(); 740 hh = hNoise2.DrawCopy("same"); 669 741 hh->Fit("gaus"); 670 742 … … 676 748 canv->cd(1); 677 749 gPad->SetLogy(); 678 hh = hFitProb.DrawCopy(); 750 hh = hFitProb1.DrawCopy(); 751 hh = hFitProb2.DrawCopy("same"); 679 752 hh->Fit("gaus"); 680 753 681 754 canv->cd(2); 682 hChi2.DrawCopy(); 755 hChiSq1.DrawCopy(); 756 hChiSq2.DrawCopy("same"); 683 757 684 758 canv->cd(4); 685 hh = hCoeffR.DrawCopy(); 759 hh = hCoeffR1.DrawCopy(); 760 hh = hCoeffR2.DrawCopy("same"); 686 761 hh->Fit("gaus"); 687 762 688 763 canv->cd(5); 689 hh = hCrosstalkP.DrawCopy(); 764 hh = hCrosstalkP1.DrawCopy(); 765 hh = hCrosstalkP2.DrawCopy("same"); 690 766 hh->Fit("gaus"); 691 767 … … 702 778 canv->cd(2); 703 779 gPad->SetLogy(); 704 hh = hNormGain.DrawCopy(); 780 hh = hNormGain1.DrawCopy(); 781 hh = hNormGain2.DrawCopy("same"); 705 782 hh->Fit("gaus"); 706 783 … … 708 785 gROOT->SetSelectedPad(0); 709 786 c11.cd(); 710 hSumClear .DrawCopy("hist same");787 hSumClear1.DrawCopy("hist same"); 711 788 712 789 //-------------------- fit gain corrected sum spectrum ------------------- 713 790 714 791 gROOT->SetSelectedPad(0); 715 TCanvas &c11b = d->AddTab("CleanHist ");792 TCanvas &c11b = d->AddTab("CleanHist1"); 716 793 c11b.cd(); 717 794 gPad->SetLogy(); … … 719 796 gPad->SetGridy(); 720 797 721 const Int_t maxbin1 = hSumClear .GetMaximumBin();722 const Double_t ampl1 = hSumClear .GetBinContent(maxbin1);798 const Int_t maxbin1 = hSumClear1.GetMaximumBin(); 799 const Double_t ampl1 = hSumClear1.GetBinContent(maxbin1); 723 800 724 801 func.SetParameters(res_par); … … 727 804 func.ReleaseParameter(6); 728 805 729 hSumClear .Fit(&func, fast?"LN0QSR":"LIN0QSR");730 731 hSumClear .DrawCopy();806 hSumClear1.Fit(&func, fast?"LN0QSR":"LIN0QSR"); 807 808 hSumClear1.DrawCopy(); 732 809 func.DrawCopy("same"); 733 810 … … 739 816 740 817 gROOT->SetSelectedPad(0); 741 TCanvas &c12 = d->AddTab("GainHist"); 818 TCanvas &c11c = d->AddTab("CleanHist2"); 819 c11c.cd(); 820 gPad->SetLogy(); 821 gPad->SetGridx(); 822 gPad->SetGridy(); 823 824 const Int_t maxbin1b = hSumClear2.GetMaximumBin(); 825 const Double_t ampl1b = hSumClear2.GetBinContent(maxbin1b); 826 827 func.SetParameters(res_par); 828 func.SetParLimits(0, 0, 2*ampl1b); 829 func.SetParameter(0, ampl1b); 830 func.ReleaseParameter(6); 831 832 hSumClear2.Fit(&func, fast?"LN0QSR":"LIN0QSR"); 833 834 hSumClear2.DrawCopy(); 835 func.DrawCopy("same"); 836 837 cout << "--------------------" << endl; 838 PrintFunc(func, integration_window); 839 cout << "--------------------" << endl; 840 841 //-------------------- fit gain corrected sum spectrum ------------------- 842 843 gROOT->SetSelectedPad(0); 844 TCanvas &c12 = d->AddTab("GainHist1"); 742 845 c12.cd(); 743 846 gPad->SetLogy(); … … 745 848 gPad->SetGridy(); 746 849 747 const Int_t maxbin2 = hSumScale .GetMaximumBin();748 const Double_t ampl2 = hSumScale .GetBinContent(maxbin2);850 const Int_t maxbin2 = hSumScale1.GetMaximumBin(); 851 const Double_t ampl2 = hSumScale1.GetBinContent(maxbin2); 749 852 750 853 //Set fit parameters 751 854 Double_t par2[7] = 752 855 { 753 ampl2, 1, 0.1, res_par[3], 0, res_par[5] /res_par[1], res_par[6]856 ampl2, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6] 754 857 }; 755 858 … … 760 863 761 864 func.SetRange(0.62, 9); 762 hSumScale.Fit(&func, fast?"LN0QSR":"LIN0QSR"); 763 764 hSumScale.DrawCopy(); 865 hSumScale1.Fit(&func, fast?"LN0QSR":"LIN0QSR"); 866 867 hSumScale1.DrawCopy(); 868 func.DrawCopy("same"); 869 870 cout << "--------------------" << endl; 871 PrintFunc(func, integration_window); 872 cout << "--------------------" << endl; 873 874 //-------------------- fit gain corrected sum spectrum ------------------- 875 876 gROOT->SetSelectedPad(0); 877 TCanvas &c12b = d->AddTab("GainHist2"); 878 c12b.cd(); 879 gPad->SetLogy(); 880 gPad->SetGridx(); 881 gPad->SetGridy(); 882 883 const Int_t maxbin2b = hSumScale2.GetMaximumBin(); 884 const Double_t ampl2b = hSumScale2.GetBinContent(maxbin2b); 885 886 //Set fit parameters 887 Double_t par2b[7] = 888 { 889 ampl2b, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6] 890 }; 891 892 func.SetParameters(par2b); 893 func.SetParLimits(0, 0, 2*ampl2b); 894 func.FixParameter(1, 1); 895 func.FixParameter(4, 0); 896 897 func.SetRange(0.62, 9); 898 hSumScale2.Fit(&func, fast?"LN0QSR":"LIN0QSR"); 899 900 hSumScale2.DrawCopy(); 765 901 func.DrawCopy("same"); 766 902 … … 794 930 return 0; 795 931 } 796
Note:
See TracChangeset
for help on using the changeset viewer.