Changeset 5276
- Timestamp:
- 10/14/04 21:55:14 (20 years ago)
- Location:
- trunk/MagicSoft/TDAS-Extractor
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Algorithms.tex
r5272 r5276 145 145 This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeDigitalFilter}}. 146 146 147 148 The goal of the digital filtering method \cite{OF94,OF99,OF_original} is to optimally reconstruct the amplitude and time origin of a signal with a known signal shape from discrete measurements of the signal. Thereby the noise contribution to the amplitude reconstruction is minimized. 149 150 For the digital filtering method two assumptions have to be made: 151 152 \begin{itemize} 153 \item{The normalized signal shape has to be independent of the signal amplitude.} 154 \item{The noise properties have to be independent of the signal amplitude.} 155 \end{itemize} 156 157 Let $g(t)$ be the normalized signal shape, $E$ the signal amplitude and $\tau$ the time shift of the physical signal from the predicted signal shape. Then the time dependence of the signal, $y(t)$, is given by: 158 159 \begin{equation} 160 y(t)=E \cdot g(t-\tau) + b(t) \ , 161 \end{equation} 162 163 where $b(t)$ is the time dependent noise distribution. For small time shifts $\tau$ the time dependence can be linearized by the use of a Taylor expansion: 164 165 \begin{equation} \label{shape_taylor_approx} 166 y(t)=E \cdot g(t) - E\tau \cdot \dot{g}(t) + b(t) \ , 167 \end{equation} 168 169 where $\dot{g}(t)$ is the time derivative of the signal shape. Discrete 170 measurements $y_i$ of the signal at times $t_i \ (i=1,...,n)$ have the form: 171 172 \begin{equation} 173 y_i=E \cdot g_i- E\tau \cdot \dot{g}_i +b_i \ . 174 \end{equation} 175 176 The correlation of the noise contributions at times $t_i$ and $t_j$ is expressed in the noise autocorrelation matrix $\boldsymbol{B}$: 177 178 \begin{equation} 179 \boldsymbol{B_{ij}} = \langle b_i b_j \rangle - \langle b_i \rangle \langle b_j 180 \rangle \ . 181 \end{equation} 182 %\equiv \langle b_i b_j \rangle with $\langle b_i \rangle = 0$. 183 184 The signal amplitude, $E$, and the product of amplitude and time shift, $E \tau$, can be estimated from the given set of 185 measurements $\boldsymbol{y} = (y_1, ... ,y_n)$ by minimizing: 186 187 \begin{eqnarray} 188 \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_i) \\ 189 &=& (\boldsymbol{y} - E 190 \boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ , 191 \end{eqnarray} 192 193 where the last expression is matricial. The minimum is obtained for: 194 195 \begin{equation} 196 \frac{\partial \chi^2(E, E\tau)}{\partial E} = 0 \qquad \text{and} \qquad \frac{\partial \chi^2(E, E\tau)}{\partial(E\tau)} = 0 \ . 197 \end{equation} 198 199 This leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$: 200 201 \begin{eqnarray} 202 0&=&-\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} 203 \\ 204 0&=&-\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} \ . 205 \end{eqnarray} 206 207 Solving these equations one gets the solutions: 208 209 \begin{equation} 210 \overline{E}= \boldsymbol{w}_{\text{amp}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{amp}} = \frac{ (\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \boldsymbol{g} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ , 211 \end{equation} 212 213 \begin{equation} 214 \overline{E\tau}= \boldsymbol{w}_{\text{time}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{time}} = \frac{ ({\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} {\boldsymbol{g}}} {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ . 215 \end{equation} 216 217 218 Thus $\overline{E}$ and $\overline{E\tau}$ are given by a weighted sum of the discrete measurements $y_i$ with the digital filtering weights for the amplitude, $w_{\text{amp},i}$, and time shift, $w_{\text{time},i}$. 219 220 Because of the truncation of the Taylor series in equation (\ref{shape_taylor_approx}) the above results are only valid for vanishing time offsets $\tau$. For non-zero time offsets one has to iterate the problem using the time shifted signal shape $g(t-\tau)$. 221 222 The covariance matrix $\boldsymbol{V}$ of $\overline{E}$ and $\overline{E\tau}$ is given by: 223 224 \begin{equation} 225 \boldsymbol{V}^{-1}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in [E, E\tau] \ . 226 \end{equation} 227 228 The expected contribution of the noise to the estimated amplitude, $\sigma_E$, is: 229 230 \begin{equation}\label{of_noise} 231 \sigma_E^2=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ . 232 \end{equation} 233 234 In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is: 235 236 \begin{equation} 237 \boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ , 238 \end{equation} 239 240 where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes: 241 242 243 \begin{equation} 244 \frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ . 245 \end{equation} 246 247 248 147 249 \ldots {\it Hendrik ... } 148 250 -
trunk/MagicSoft/TDAS-Extractor/Changelog
r5271 r5276 20 20 -*-*- END OF LINE -*-*- 21 21 22 2004/10/14: Hendrik Bartko 23 * inserted some theory about the digital filter, could in principle 24 be moved to an appendix 25 22 26 2004/10/13: Hendrik Bartko 23 27 * MAGIC_signal_reco.tex: uncommented the \citesort command
Note:
See TracChangeset
for help on using the changeset viewer.