Changeset 5276


Ignore:
Timestamp:
10/14/04 21:55:14 (20 years ago)
Author:
hbartko
Message:
*** empty log message ***
Location:
trunk/MagicSoft/TDAS-Extractor
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Algorithms.tex

    r5272 r5276  
    145145This extractor is implemented in the MARS-class {\textit{MExtractTimeAndChargeDigitalFilter}}.
    146146
     147
     148The goal of the digital filtering method \cite{OF94,OF99,OF_original} is to optimally reconstruct the amplitude and time origin of a signal with a known signal shape from discrete measurements of the signal. Thereby the noise contribution to the amplitude reconstruction is minimized.
     149
     150For the digital filtering method two assumptions have to be made:
     151
     152\begin{itemize}
     153\item{The normalized signal shape has to be independent of the signal amplitude.}
     154\item{The noise properties have to be independent of the signal amplitude.}
     155\end{itemize}
     156
     157Let $g(t)$ be the normalized signal shape, $E$ the signal amplitude and $\tau$ the time shift of the physical signal from the predicted signal shape. Then the time dependence of the signal, $y(t)$, is given by:
     158
     159\begin{equation}
     160y(t)=E \cdot  g(t-\tau) + b(t) \ ,
     161\end{equation}
     162
     163where $b(t)$ is the time dependent noise distribution. For small time shifts $\tau$ the time dependence can be linearized by the use of a Taylor expansion:
     164
     165\begin{equation} \label{shape_taylor_approx}
     166y(t)=E \cdot  g(t) - E\tau \cdot  \dot{g}(t) + b(t) \ ,
     167\end{equation}
     168
     169where $\dot{g}(t)$ is the time derivative of the signal shape. Discrete
     170measurements $y_i$ of the signal at times $t_i \ (i=1,...,n)$ have the form:
     171
     172\begin{equation}
     173y_i=E \cdot g_i- E\tau \cdot \dot{g}_i +b_i \ .
     174\end{equation}
     175
     176The correlation of the noise contributions at times $t_i$ and $t_j$ is expressed in the noise autocorrelation matrix $\boldsymbol{B}$:
     177
     178\begin{equation}
     179\boldsymbol{B_{ij}} = \langle b_i b_j \rangle - \langle b_i \rangle \langle b_j
     180\rangle  \ .
     181\end{equation}
     182%\equiv \langle b_i b_j \rangle with $\langle b_i \rangle = 0$.
     183
     184The signal amplitude, $E$, and the product of amplitude and time shift, $E \tau$, can be estimated from the given set of
     185measurements $\boldsymbol{y} = (y_1, ... ,y_n)$ by minimizing:
     186
     187\begin{eqnarray}
     188\chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_i) \\
     189&=& (\boldsymbol{y} - E
     190\boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ ,
     191\end{eqnarray}
     192
     193where the last expression is matricial. The minimum is obtained for:
     194
     195\begin{equation}
     196\frac{\partial \chi^2(E, E\tau)}{\partial E} = 0 \qquad \text{and} \qquad \frac{\partial \chi^2(E, E\tau)}{\partial(E\tau)} = 0 \ .
     197\end{equation}
     198
     199This leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$:
     200
     201\begin{eqnarray}
     2020&=&-\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau}
     203\\
     2040&=&-\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{y}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g}\overline{E}+\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}\overline{E\tau} \ .
     205\end{eqnarray}
     206
     207Solving these equations one gets the solutions:
     208
     209\begin{equation}
     210\overline{E}= \boldsymbol{w}_{\text{amp}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{amp}} = \frac{ (\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) \boldsymbol{B}^{-1} \boldsymbol{g} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}})  \boldsymbol{B}^{-1} \dot{\boldsymbol{g}}}  {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ ,
     211\end{equation}
     212
     213\begin{equation}
     214\overline{E\tau}= \boldsymbol{w}_{\text{time}}^T \boldsymbol{y} \quad \mathrm{with} \quad \boldsymbol{w}_{\text{time}} = \frac{ ({\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}) \boldsymbol{B}^{-1} \dot{\boldsymbol{g}} -(\boldsymbol{g}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}})  \boldsymbol{B}^{-1} {\boldsymbol{g}}}  {(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2 } \ .
     215\end{equation}
     216
     217
     218Thus $\overline{E}$ and $\overline{E\tau}$ are given by a weighted sum of the discrete measurements $y_i$ with the digital filtering weights for the amplitude, $w_{\text{amp},i}$, and time shift, $w_{\text{time},i}$.
     219
     220Because of the truncation of the Taylor series in equation (\ref{shape_taylor_approx}) the above results are only valid for vanishing time offsets $\tau$. For non-zero time offsets one has to iterate the problem using the time shifted signal shape $g(t-\tau)$.
     221
     222The covariance matrix $\boldsymbol{V}$ of $\overline{E}$ and $\overline{E\tau}$ is given by:
     223
     224\begin{equation}
     225\boldsymbol{V}^{-1}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in [E, E\tau] \ .
     226\end{equation}
     227
     228The expected contribution of the noise to the estimated amplitude, $\sigma_E$, is:
     229
     230\begin{equation}\label{of_noise}
     231\sigma_E^2=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
     232\end{equation}
     233
     234In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
     235
     236\begin{equation}
     237\boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
     238\end{equation}
     239
     240where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
     241
     242
     243\begin{equation}
     244\frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
     245\end{equation}
     246
     247
     248
    147249\ldots {\it Hendrik ... }
    148250
  • trunk/MagicSoft/TDAS-Extractor/Changelog

    r5271 r5276  
    2020                                                 -*-*- END OF LINE -*-*-
    2121
     222004/10/14: Hendrik Bartko
     23  * inserted some theory about the digital filter, could in principle
     24    be moved to an appendix
     25
    22262004/10/13: Hendrik Bartko
    2327  * MAGIC_signal_reco.tex: uncommented the \citesort command
Note: See TracChangeset for help on using the changeset viewer.