Changeset 5376 for trunk


Ignore:
Timestamp:
11/10/04 22:17:06 (20 years ago)
Author:
hbartko
Message:
*** empty log message ***
Location:
trunk/MagicSoft/TDAS-Extractor
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Algorithms.tex

    r5315 r5376  
    232232\end{equation}
    233233
    234 In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
    235 
    236 \begin{equation}
    237 \boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
    238 \end{equation}
    239 
    240 where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
    241 
    242 
    243 \begin{equation}
    244 \frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
    245 \end{equation}
     234The expected contribution of the noise to the estimated timing ,$\sigma_{\tau}$, is:
     235
     236\begin{equation}\label{of_noise_time}
     237E^2 \cdot \sigma_{\tau}^2=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
     238\end{equation}
     239
     240For the MAGIC signals, as implemented in the MC simulations, a pedestal RMS of a single FADC slice of 4 FADC counts introduces an error in the reconstructed signal and time of:
     241
     242\begin{equation}\label{of_noise}
     243\sigma_E \approx 8.3 \ \mathrm{FADC\ counts} \qquad \sigma_{\tau}  \approx  \frac{6.5\ \Delta T_{\mathrm{FADC}}}{E\ /\ \mathrm{FADC\ counts}} \ ,
     244\end{equation}
     245
     246where $\Delta T_{\mathrm{FADC}} = 3.33$ ns is the sampling intervall of the MAGIC FADCs.
     247
     248In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed:
     249
     250\begin{equation}
     251e_{i_0}=\sum_{i=i_0}^{i=i_0+5} w_{\mathrm{amp}(t_i)}y(t_{i+i_0}) \qquad e\tau_{i_0}=\sum_{i=i_0}^{i=i_0+5} w(t_i)_{\mathrm{time}(t_i)}y(t_{i+i_0})
     252\end{equation}
     253
     254for all possible signal start samples $i_0$. Let $i_0^*$ be the signal start sample with the largest $e_{i_0}$. Then in a seconst step the timing offset $\tau$ is calculated:
     255
     256\begin{equation}
     257\tau=\frac{e\tau_{i_0^*}}{e_{i_0^*}}
     258\end{equation}
     259
     260and the weigths iterated:
     261
     262\begin{equation}
     263E_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w_{\mathrm{amp}(t_i - \tau)}y(t_{i+i_0^*}) \qquad E \tau_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w(t_i - \tau)_{\mathrm{time}(t_i)}y(t_{i+i_0^*}) \ .
     264\end{equation}
     265
     266The reconstructed signal is then taken to be $E_{i_0^*}$ and the reconstructed arrival time $t_{\text{arrival}}$ is
     267
     268\begin{equation}
     269t_{\text{arrival}} = i_0^* + \tau_{i_0^*} + \tau \ .
     270\end{equation}
     271
     272
     273
     274% This does not apply for MAGIC as the LONs are giving always a correlated noise (in addition to the artificial shaping)
     275
     276%In the case of an uncorrelated noise with zero mean the noise autocorrelation matrix is:
     277
     278%\begin{equation}
     279%\boldsymbol{B}_{ij}= \langle b_i b_j \rangle \delta_{ij} = \sigma^2(b_i) \ ,
     280%\end{equation}
     281
     282%where $\sigma(b_i)$ is the standard deviation of the noise of the discrete measurements. Equation (\ref{of_noise}) than becomes:
     283
     284
     285%\begin{equation}
     286%\frac{\sigma^2(b_i)}{\sigma_E^2} = \sum_{i=1}^{n}{g_i^2} - \frac{\sum_{i=1}^{n}{g_i \dot{g}_i}}{\sum_{i=1}^{n}{\dot{g}_i^2}} \ .
     287%\end{equation}
    246288
    247289
  • trunk/MagicSoft/TDAS-Extractor/Changelog

    r5370 r5376  
    1919
    2020                                                 -*-*- END OF LINE -*-*-
     21
     222004/11/10: Hendrik Bartko
     23  * Algorithms.tex: added the theoretical error on the arrival time
     24    determination, added information about the current implementation
     25    of the digital filter
    2126
    22272004/11/10: Markus Gaug
Note: See TracChangeset for help on using the changeset viewer.