Changeset 5705 for trunk/MagicSoft/TDAS-Extractor
- Timestamp:
- 01/05/05 15:38:25 (20 years ago)
- Location:
- trunk/MagicSoft/TDAS-Extractor
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Algorithms.tex
r5623 r5705 188 188 189 189 \begin{eqnarray} 190 \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_ i) \\190 \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_j) \\ 191 191 &=& (\boldsymbol{y} - E 192 192 \boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ , … … 199 199 \end{equation} 200 200 201 T his leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$:201 Taking into account that $\boldsymbol{B}$ is a symmetric matrix, this leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$: 202 202 203 203 \begin{eqnarray} … … 225 225 226 226 \begin{equation} 227 \ boldsymbol{V}^{-1}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in [E, E\tau]\ .227 \left(\boldsymbol{V}^{-1}\right)_{i,j}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in {E, E\tau} \ . 228 228 \end{equation} 229 229 … … 231 231 232 232 \begin{equation}\label{of_noise} 233 \sigma_E^2=\ frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .234 \end{equation} 235 236 The expected contribution of the noise to the estimated timing ,$\sigma_{\tau}$, is:233 \sigma_E^2=\boldsymbol{V}_{E,E}=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ . 234 \end{equation} 235 236 The expected contribution of the noise to the estimated timing, $\sigma_{\tau}$, is: 237 237 238 238 \begin{equation}\label{of_noise_time} 239 E^2 \cdot \sigma_{\tau}^2=\ frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .239 E^2 \cdot \sigma_{\tau}^2=\boldsymbol{V}_{E,E\tau}=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ . 240 240 \end{equation} 241 241 … … 252 252 253 253 The electronics noise is largely white, uncorrelated in time. The noise from the night sky background photons is the superposition of the detector response to single photo electrons arriving randomly distributed in time. Figure \ref{fig:noise_autocorr_AB_36038_TDAS} shows the noise autocorrelation matrix for an open camera. The large noise autocorrelation in time of the current FADC system is due to the pulse shaping with a shaping constant of 6 ns. 254 255 In general the amplitude and timing weights, $\boldsymbol{w}_{\text{amp}}$ and $\boldsymbol{w}_{\text{time}}$, depend on the pulse shape, the derivative of the pulse shape and the noise autocorrelation. In the high gain samples the correlated night sky background noise dominates over the white electronics noise. Thus different noise levels just cause the noise autocorrelation matrix $\boldsymbol{B}$ to change by a factor, which cancells out in the weights calculation. Thus in the high gain the weights are to a very good approximation independent of the night sky background noise level. 256 257 Contrary to that in the low gain samples ... . 258 259 254 260 255 261 \begin{figure}[h!] … … 269 275 \includegraphics[totalheight=7cm]{w_time_MC_input_TDAS.eps} 270 276 \end{center} 271 \caption[Time weights.]{Time weights .} \label{fig:w_time_MC_input_TDAS}277 \caption[Time weights.]{Time weights $w_{\mathrm{time}}(t_0) \ldots w_{\mathrm{time}}(t_5)$ for a window size of 6 FADC slices. The first weight $w_{\mathrm{time}}(t_0)$ is plotted as a fuction of the relative time $t_{\text{rel}}$ the trigger and the FADC clock in the range $[-0.5;0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5;1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution of $0.1 T_{\text{ADC}}$ has been chosen.} \label{fig:w_time_MC_input_TDAS} 272 278 \end{figure} 273 279 … … 276 282 \includegraphics[totalheight=7cm]{w_amp_MC_input_TDAS.eps} 277 283 \end{center} 278 \caption[Amplitude weights.]{Amplitude weights .} \label{fig:w_amp_MC_input_TDAS}284 \caption[Amplitude weights.]{Amplitude weights $w_{\mathrm{amp}}(t_0) \ldots w_{\mathrm{amp}}(t_5)$ for a window size of 6 FADC slices. The first weight $w_{\mathrm{amp}}(t_0)$ is plotted as a fuction of the relative time $t_{\text{rel}}$ the trigger and the FADC clock in the range $[-0.5;0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5;1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution of $0.1 T_{\text{ADC}}$ has been chosen.} \label{fig:w_amp_MC_input_TDAS} 279 285 \end{figure} 280 286 281 287 282 288 283 In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed :284 285 \begin{equation} 286 e_{i_0}=\sum_{i=i_0}^{i=i_0+ 5} w_{\mathrm{amp}(t_i)}y(t_{i+i_0}) \qquad e\tau_{i_0}=\sum_{i=i_0}^{i=i_0+5} w(t_i)_{\mathrm{time}(t_i)}y(t_{i+i_0})287 \end{equation} 288 289 for all possible signal start s amples $i_0$. Let $i_0^*$ be the signal start sample with the largest $e_{i_0}$. Then in a seconst step the timing offset $\tau$ is calculated:290 291 \begin{equation} 292 \tau=\frac{ e\tau_{i_0^*}}{e_{i_0^*}}289 In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed using a window of $n$ slices: 290 291 \begin{equation} 292 e_{i_0}=\sum_{i=i_0}^{i=i_0+n-1} w_{\mathrm{amp}}(t_i)y(t_{i+i_0}) \qquad (e\tau)_{i_0}=\sum_{i=i_0}^{i=i_0+n-1} w_{\mathrm{time}}(t_i)y(t_{i+i_0}) 293 \end{equation} 294 295 for all possible signal start slicess $i_0$. Let $i_0^*$ be the signal start slice with the largest $e_{i_0}$. Then in a seconst step the timing offset $\tau$ is calculated: 296 297 \begin{equation} 298 \tau=\frac{(e\tau)_{i_0^*}}{e_{i_0^*}} 293 299 \end{equation} 294 300 … … 296 302 297 303 \begin{equation} 298 E _{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w_{\mathrm{amp}(t_i - \tau)}y(t_{i+i_0^*}) \qquad E \tau_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w(t_i - \tau)_{\mathrm{time}(t_i)}y(t_{i+i_0^*}) \ .299 \end{equation} 300 301 The reconstructed signal is then taken to be $E _{i_0^*}$ and the reconstructed arrival time $t_{\text{arrival}}$ is302 303 \begin{equation} 304 t_{\text{arrival}} = i_0^* + \tau _{i_0^*} + \tau\ .304 E=\sum_{i=i_0^*}^{i=i_0^*+n-1} w_{\mathrm{amp}}(t_i - \tau)y(t_{i+i_0^*}) \qquad E \theta=\sum_{i=i_0^*}^{i=i_0^*+n-1} w_{\mathrm{time}}(t_i - \tau)y(t_{i+i_0^*}) \ . 305 \end{equation} 306 307 The reconstructed signal is then taken to be $E$ and the reconstructed arrival time $t_{\text{arrival}}$ is 308 309 \begin{equation} 310 t_{\text{arrival}} = i_0^* + \tau + \theta \ . 305 311 \end{equation} 306 312 … … 337 343 338 344 339 Figure \ref{fig:shape_fit_TDAS} shows the FADC s amples of a single MC event together with the result of a full fit of the input MC pulse shape to the simulated FADC samples together with the result of the numerical fit using the digital filter.345 Figure \ref{fig:shape_fit_TDAS} shows the FADC slices of a single MC event together with the result of a full fit of the input MC pulse shape to the simulated FADC samples together with the result of the numerical fit using the digital filter. 340 346 341 347 -
trunk/MagicSoft/TDAS-Extractor/Changelog
r5699 r5705 20 20 -*-*- END OF LINE -*-*- 21 21 22 2005/01/05: Hendrik Bartko 23 * amp_sliding: figure updated 24 * time_sliding: figure updated 25 * Algorithms.tex: text updated 26 * Reconstruction.tex: text updated 27 22 28 2004/01/05: Markus Gaug 23 29 * Introduction.tex: Some changes in style … … 29 35 * Performance.tex: included sections dealing with calibration (not yet 30 36 ready) 31 32 37 33 38
Note:
See TracChangeset
for help on using the changeset viewer.