Ignore:
Timestamp:
01/05/05 15:38:25 (20 years ago)
Author:
hbartko
Message:
*** empty log message ***
Location:
trunk/MagicSoft/TDAS-Extractor
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Algorithms.tex

    r5623 r5705  
    188188
    189189\begin{eqnarray}
    190 \chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_i) \\
     190\chi^2(E, E\tau) &=& \sum_{i,j}(y_i-E g_i-E\tau \dot{g}_i) \boldsymbol{B}^{-1}_{ij} (y_j - E g_j-E\tau \dot{g}_j) \\
    191191&=& (\boldsymbol{y} - E
    192192\boldsymbol{g} - E\tau \dot{\boldsymbol{g}})^T \boldsymbol{B}^{-1} (\boldsymbol{y} - E \boldsymbol{g}- E\tau \dot{\boldsymbol{g}}) \ ,
     
    199199\end{equation}
    200200
    201 This leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$:
     201Taking into account that $\boldsymbol{B}$ is a symmetric matrix, this leads to the following two equations for the estimated amplitude $\overline{E}$ and the estimation for the product of amplitude and time offset $\overline{E\tau}$:
    202202
    203203\begin{eqnarray}
     
    225225
    226226\begin{equation}
    227 \boldsymbol{V}^{-1}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in [E, E\tau] \ .
     227\left(\boldsymbol{V}^{-1}\right)_{i,j}=\frac{1}{2}\left(\frac{\partial^2 \chi^2(E, E\tau)}{\partial \alpha_i \partial \alpha_j} \right) \quad \text{with} \quad \alpha_i,\alpha_j \in {E, E\tau} \ .
    228228\end{equation}
    229229
     
    231231
    232232\begin{equation}\label{of_noise}
    233 \sigma_E^2=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
    234 \end{equation}
    235 
    236 The expected contribution of the noise to the estimated timing ,$\sigma_{\tau}$, is:
     233\sigma_E^2=\boldsymbol{V}_{E,E}=\frac{\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
     234\end{equation}
     235
     236The expected contribution of the noise to the estimated timing, $\sigma_{\tau}$, is:
    237237
    238238\begin{equation}\label{of_noise_time}
    239 E^2 \cdot \sigma_{\tau}^2=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
     239E^2 \cdot \sigma_{\tau}^2=\boldsymbol{V}_{E,E\tau}=\frac{{\boldsymbol{g}}^T\boldsymbol{B}^{-1}{\boldsymbol{g}}}{(\boldsymbol{g}^T \boldsymbol{B}^{-1} \boldsymbol{g})(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\dot{\boldsymbol{g}}) -(\dot{\boldsymbol{g}}^T\boldsymbol{B}^{-1}\boldsymbol{g})^2} \ .
    240240\end{equation}
    241241
     
    252252
    253253The electronics noise is largely white, uncorrelated in time. The noise from the night sky background photons is the superposition of the detector response to single photo electrons arriving randomly distributed in time. Figure \ref{fig:noise_autocorr_AB_36038_TDAS} shows the noise autocorrelation matrix for an open camera. The large noise autocorrelation in time of the current FADC system is due to the pulse shaping with a shaping constant of 6 ns.
     254
     255In general the amplitude and timing weights, $\boldsymbol{w}_{\text{amp}}$ and $\boldsymbol{w}_{\text{time}}$, depend on the pulse shape, the derivative of the pulse shape and the noise autocorrelation. In the high gain samples the correlated night sky background noise dominates over the white electronics noise. Thus different noise levels just cause the noise autocorrelation matrix $\boldsymbol{B}$ to change by a factor, which cancells out in the weights calculation. Thus in the high gain the weights are to a very good approximation independent of the night sky background noise level.
     256
     257Contrary to that in the low gain samples ... .
     258
     259
    254260
    255261\begin{figure}[h!]
     
    269275\includegraphics[totalheight=7cm]{w_time_MC_input_TDAS.eps}
    270276\end{center}
    271 \caption[Time weights.]{Time weights.} \label{fig:w_time_MC_input_TDAS}
     277\caption[Time weights.]{Time weights $w_{\mathrm{time}}(t_0) \ldots w_{\mathrm{time}}(t_5)$ for a window size of 6 FADC slices. The first weight $w_{\mathrm{time}}(t_0)$ is plotted as a fuction of the relative time $t_{\text{rel}}$ the trigger and the FADC clock in the range $[-0.5;0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5;1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution of $0.1  T_{\text{ADC}}$ has been chosen.} \label{fig:w_time_MC_input_TDAS}
    272278\end{figure}
    273279
     
    276282\includegraphics[totalheight=7cm]{w_amp_MC_input_TDAS.eps}
    277283\end{center}
    278 \caption[Amplitude weights.]{Amplitude weights.} \label{fig:w_amp_MC_input_TDAS}
     284\caption[Amplitude weights.]{Amplitude weights $w_{\mathrm{amp}}(t_0) \ldots w_{\mathrm{amp}}(t_5)$ for a window size of 6 FADC slices. The first weight $w_{\mathrm{amp}}(t_0)$ is plotted as a fuction of the relative time $t_{\text{rel}}$ the trigger and the FADC clock in the range $[-0.5;0.5[ \ T_{\text{ADC}}$, the second weight in the range $[0.5;1.5[ \ T_{\text{ADC}}$ and so on. A binning resolution of $0.1  T_{\text{ADC}}$ has been chosen.} \label{fig:w_amp_MC_input_TDAS}
    279285\end{figure}
    280286
    281287
    282288
    283 In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed:
    284 
    285 \begin{equation}
    286 e_{i_0}=\sum_{i=i_0}^{i=i_0+5} w_{\mathrm{amp}(t_i)}y(t_{i+i_0}) \qquad e\tau_{i_0}=\sum_{i=i_0}^{i=i_0+5} w(t_i)_{\mathrm{time}(t_i)}y(t_{i+i_0})
    287 \end{equation}
    288 
    289 for all possible signal start samples $i_0$. Let $i_0^*$ be the signal start sample with the largest $e_{i_0}$. Then in a seconst step the timing offset $\tau$ is calculated:
    290 
    291 \begin{equation}
    292 \tau=\frac{e\tau_{i_0^*}}{e_{i_0^*}}
     289In the current implementation a two step procedure is applied to reconstruct the signal. The weight functions $w_{\mathrm{amp}}(t)$ and $w_{\mathrm{time}}(t)$ are computed numerically with a resolution of $1/10$ of an FADC slice. In the first step the quantities $e_{i_0}$ and $e\tau_{i_0}$ are computed using a window of $n$ slices:
     290
     291\begin{equation}
     292e_{i_0}=\sum_{i=i_0}^{i=i_0+n-1} w_{\mathrm{amp}}(t_i)y(t_{i+i_0}) \qquad (e\tau)_{i_0}=\sum_{i=i_0}^{i=i_0+n-1} w_{\mathrm{time}}(t_i)y(t_{i+i_0})
     293\end{equation}
     294
     295for all possible signal start slicess $i_0$. Let $i_0^*$ be the signal start slice with the largest $e_{i_0}$. Then in a seconst step the timing offset $\tau$ is calculated:
     296
     297\begin{equation}
     298\tau=\frac{(e\tau)_{i_0^*}}{e_{i_0^*}}
    293299\end{equation}
    294300
     
    296302
    297303\begin{equation}
    298 E_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w_{\mathrm{amp}(t_i - \tau)}y(t_{i+i_0^*}) \qquad E \tau_{i_0^*}=\sum_{i=i_0^*}^{i=i_0^*+5} w(t_i - \tau)_{\mathrm{time}(t_i)}y(t_{i+i_0^*}) \ .
    299 \end{equation}
    300 
    301 The reconstructed signal is then taken to be $E_{i_0^*}$ and the reconstructed arrival time $t_{\text{arrival}}$ is
    302 
    303 \begin{equation}
    304 t_{\text{arrival}} = i_0^* + \tau_{i_0^*} + \tau \ .
     304E=\sum_{i=i_0^*}^{i=i_0^*+n-1} w_{\mathrm{amp}}(t_i - \tau)y(t_{i+i_0^*}) \qquad E \theta=\sum_{i=i_0^*}^{i=i_0^*+n-1} w_{\mathrm{time}}(t_i - \tau)y(t_{i+i_0^*}) \ .
     305\end{equation}
     306
     307The reconstructed signal is then taken to be $E$ and the reconstructed arrival time $t_{\text{arrival}}$ is
     308
     309\begin{equation}
     310t_{\text{arrival}} = i_0^* + \tau + \theta \ .
    305311\end{equation}
    306312
     
    337343
    338344
    339 Figure \ref{fig:shape_fit_TDAS} shows the FADC samples of a single MC event together with the result of a full fit of the input MC pulse shape to the simulated FADC samples together with the result of the numerical fit using the digital filter.
     345Figure \ref{fig:shape_fit_TDAS} shows the FADC slices of a single MC event together with the result of a full fit of the input MC pulse shape to the simulated FADC samples together with the result of the numerical fit using the digital filter.
    340346
    341347
  • trunk/MagicSoft/TDAS-Extractor/Changelog

    r5699 r5705  
    2020                                                 -*-*- END OF LINE -*-*-
    2121
     222005/01/05: Hendrik Bartko
     23  * amp_sliding: figure updated
     24  * time_sliding: figure updated
     25  * Algorithms.tex: text updated
     26  * Reconstruction.tex: text updated
     27
    22282004/01/05: Markus Gaug
    2329  * Introduction.tex: Some changes in style
     
    2935  * Performance.tex: included sections dealing with calibration (not yet
    3036    ready)
    31 
    3237
    3338
Note: See TracChangeset for help on using the changeset viewer.