Changeset 6097


Ignore:
Timestamp:
01/28/05 18:07:50 (20 years ago)
Author:
gaug
Message:
*** empty log message ***
Location:
trunk/MagicSoft/GRB-Proposal
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/GRB-Proposal/GRB_proposal_2005.tex

    r6003 r6097  
    5454%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    5555\title{Proposal for the Observation of Gamma-Ray Bursts with the MAGIC Telescope \\
    56      {\it \Large DRAFT 1.0 }}
    57 \author{  N. Galante\\ \texttt{<nicola.galante@pd.infn.it>}\\
     56       {\it \Large DRAFT 2.0 }}
     57\author{  N. Galante\\ \texttt{<nicola.galante@pi.infn.it>}\\
    5858  M. Garczarczyk\\ \texttt{<garcz@mppmu.mpg.de>}\\
    5959  M. Gaug\\ \texttt{<markus@ifae.es>} \\
    60   S. Mizobuchi\\ \texttt{<satoko@icrr.u-tokyo.ac.jp>} 
     60  S. Mizobuchi\\ \texttt{<satoko@icrr.u-tokyo.ac.jp>}
    6161}
    62  
     62
    6363\date{January, 2005\\}
    6464\TDAScode{MAGIC-TDAS 05-??\\ 0312??/NGalante}
     
    6969%% abstract %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    7070\begin{abstract}
    71 We give a detailed plan for the observation of Gamma Ray Bursts for the year
    72 2005. All observations will be triggered mainly by alerts of the satellites \he, \ig   
    73 and above all \sw. we expect an alert rate of a total of about
     71We give a detailed strategy for the observation of Gamma Ray Bursts (GRBs) for the first
     72half year of 2005. All observations will be triggered mainly by alerts of the satellites
     73\he, \ig and above all \sw. We expect an alert rate in total of about
    7474\par
    7575\ldots HOW MANY??? \ldots
    7676\par
    77 per year out of which only about 
     77per year out of which only about
    7878\par
    7979\ldots HOW MANY??? \ldots
    8080\par
    81 will be followed by a position.
    82 We give a detailed description of the observation procedures in La Palma and 
     81will contain the GRB coordinates.
     82We give a detailed description of the observation procedures in La Palma and
    8383propose to review the situation in half a year from now.
    8484\end{abstract}
     
    109109%\theBibliography
    110110
    111 %%>>>> Or the following if you include here by hand your 
     111%%>>>> Or the following if you include here by hand your
    112112%%>>>> bibliographic entries
    113113\begin{thebibliography}{900}
    114 \bibitem{design} The MAGIC Telescope, Design study for the construction of a 17~xm Cherenkov
     114\bibitem{design} The MAGIC Telescope, Design study for the construction of a 17~m diameter Cherenkov
    115115telescope for Gamma-Astronomy above 10~GeV, March 1998, Version 5
    116 \bibitem{PETRY} The MAGIC Telescope - Prospects for GRB research
     116\bibitem{PETRY} The MAGIC Telescope - Prospects for GRB research,
    117117D. Petry for the MAGIC collaboration, Astron. Astrophys. Suppl. Ser. 138, 601, 1999.
     118\bibitem{HARTMANN} Gamma-Ray Bursts and Cosmic Radiation Backgrounds,
     119Hartmann D.H., Kneiske T.M., Mannheim K.,Watanabe K., AIP Conference Proceedings, 662, 442, 2003.
     120\bibitem{MANNHEIM} Mannheim K., Hartmann D., Burkhardt F., AsJ, 467, 532, 1996.
     121\bibitem{SALOMON} Absorption of HE Gamma Rays by Interactions with Extragalactic Starlight Photons at High Redshifts and the HE Gamma-Ray Background, Salomon M.H., Stecker F.J., ApJ, 493, 547, 1998.
     122\bibitem{DERMER} Beaming, Baryon loading, and the Synchrotron Self-Compton Component in Gamma-Ray Bursts,
     123Dermer \& Chiang, ApJ, 537, 785, 2000.
     124\bibitem{PILLA} Emission Spectra from Internal Shocks in Gamma-Ray Burst Sources,
     125Pilla R.P., Loeb A., ApJ, 494, L167, 1998.
     126\bibitem{ZHANG1} High-Energy Spectral Components in Gamma-Ray Burst Afterglows,
     127Zhang \& Meszaros, ApJ, 559, 110, 2001.
    118128\bibitem{EGRET} Hurley K. et al., Nature, 372, 652
    119 \bibitem{HEGRA} Search for gamma-ray brusts above 20 TeV with the HEGRA AIROBICC
    120 Cherenkov array,
    121 L. Padilla et al., FAMN-97-1, Jul 1998,
    122 submitted to A\&A,
    123 astro-ph/9807342
    124 \bibitem{TIBET} Search for 10 TeV burst-like events coincident with the BATSE bursts
    125 using the TIBET Air Shower Array,
    126 Amenomori M. et al.,
    127 AIP Conf.Proc.558:8;
    128 ``Heidelberg 2000, High energy gamma-ray astronomy'' 844-849, 2001.
    129 \bibitem{MILAGRO} The high-energy gamma-ray fluence and energy spectrum of GRB 970417A
    130 from observations with Milagrito,
    131 Milagro Collaboration (R. Atkins et al.). July 2002, 
    132 submitted to Astrophys. J., available at astro-ph/0207149
    133 \bibitem{GRAND} A Search for Sub-TeV Gammas in Coincidence with Gamma Ray Bursts,
    134 Poirier J, et al.,
    135 submitted to Physical Review D
    136 astro-ph/0004379
    137 \bibitem{TASC} M.M. Gonz{\'a}lez et al., Nature, 424, 749 (2002)
     129\bibitem{DINGUS} ESLAB29, Towards the Source of Gamma-Ray Bursts, Dingus, Ap\&SS, 231, 187, 1995.
     130\bibitem{GONZALES} A GRB with high-energy Spectral Component Inconsistent with the Synchrotron Shock Model,
     131Gonzales at al., Nature, 424, 749, 2003.
     132\bibitem{AMENOMORI} Search for 10 TeV burst-like events coincident with the BATSE bursts
     133using the TIBET Air Shower Array, Amenomori M., et al., A\&A, 311, 919, 1996.
     134\bibitem{CONNAUGHTON1} A Search for TeV Counterparts to BATSE GRBs,
     135Connaughton at al., ApJ, 479, 859, 1997.
     136\bibitem{PADILLA} Search for Gamma-Ray Bursts above 20~TeV with the HEGRA AIROBICC Cherenkov Array,
     137Padilla at al., A\&A, 337, 43, 1998.
     138\bibitem{CONNAUGHTON2} A Search for TeV GRBs on a 1-second time-scale,
     139Connaughton at al., Astroparticle Physics, vol. 8, no. 3, 179, 1998.
     140\bibitem{MILAGRO} The high-energy gamma-ray fluence and energy spectrum of GRB 970417A
     141from observations with Milagrito, R. Atkins et al., ApJ, 533, L119, 2000.
     142\bibitem{GRAND} Sub-TeV Gammas in Coincidence with BATSE Gamma Ray Bursts,
     143Poirier J, et al., Physical Review D, 67, 042001, 2003.
     144\bibitem{TOTANI} Totani T., Astrophys. J. 502 L13 (1998), 509 L81 (1998),
     145536, L23, 2000.
     146\bibitem{WAXMAN} Waxman E., Phys. Rev. Lett. 75, 386, 1995.
     147\bibitem{BAHCALL} Waxman E., Bahcall J., Phys. Rev. Lett 78, 2292, 1997.
     148\bibitem{BOETTCHER} Boettcher M, Dermer C.D., Astrophys. J. 499 L131, 1998.
     149\bibitem{MESZAROS93} Meszaros P., Rees M., Astrophys. J. 418 L59, 1993.
     150\bibitem{CHIANG} Chiang J., Dermer C.D., Astrophys. J. 512 699, 1999.
     151\bibitem{ZHANG2} Zhang B., Meszaros P., Astrophys. J. 559 110, 2001.
     152\bibitem{LI} Li Z., Dai G., Lu T., accepted for A\&A, astro-ph/0208435, 2002.
     153\bibitem{ICRC} The MAGIC Telescope and the Observation of GRBs,
     154Galante N. et al., Proceedings of the 28$^{th}$ ICRC, Tsukuba, Japan, 2003.
     155\bibitem{NICOLA} Il Telescopio MAGIC per l'osservazione dei Gamma Ray Bursts,
     156Nicola Galante, tesi di laurea, (available at: http://www.pd.infn.it/magic/publi.html), 2002.
     157
     158%End of the list in the introduction
     159
    138160\bibitem{PAZCYNSKI} Pazcy\'{n}ski B., Astrophys. J. 308 L43 (1986)
    139161\bibitem{GOODMAN} Goodman J., Astrophys. J. 308 L47 (1986)
     
    141163\bibitem{XU} Pazcy\'{n}ski B., Xu G., Astrophys. J. 427 708 (1994)
    142164\bibitem{REES} Rees M., Meszaros P., MNRAS 258 P41 (1992)
    143 \bibitem{MESZAROS93} Meszaros P., Rees M., Astrophys. J. 418 L59 (1993)
    144165\bibitem{MESZAROS94} Meszaros P., Rees M., MNRAS 289 L41 (1994)
    145 \bibitem{WAXMAN} Waxman E., Phys. Rev. Lett. 75, 386 (1995)
    146 \bibitem{TOTANI} Totani T., Astrophys. J. 502 L13 (1998), 509 L81 (1998),
    147 536 L23 (2000)
    148 \bibitem{BAHCALL} Waxman E., Bahcall J., Phys. Rev. Lett 78, 2292 (1997)
    149 \bibitem{CHIANG} Chiang J., Dermer C.D., Astrophys. J. 512 699 (1999)
    150 \bibitem{BOETTCHER} Boettcher M, Dermer C.D., Astrophys. J. 499 L131 (1998)
    151 \bibitem{DERMER} Beaming, baryon-loading, and the synchrotron self-compton component in gamma-ray burst blast waves energized by external shocks,
    152 Dermer C.D., Chiang J., Mitman K.E., 1999, submitted to ApJ.,
    153 astro-ph/9910240
    154 \bibitem{PILLA} Emission spectra from internal shocks in gamma-ray burst sources,
    155 Pilla R.P., Loeb A., 1998, ApJ 494, L167 (astro-ph/9710219).
    156 \bibitem{ZHANG} Zhang B., Meszaros P., Astrophys. J. 559 110 (2001)
    157 \bibitem{HARTMANN} Hartmann D.H., Kneiske T.M., Mannheim K.,Watanabe K.,
    158 2002,
    159 astro-ph/0201299
    160 \bibitem{LI} Li Z., Dai G., Lu T., accepted for A\&A, astro-ph/0208435 (2002)
    161 \bibitem{MANNHEIM} Mannheim K., Hartmann D., Burkhardt F., Astrophys. J. 467 532 (1996)
    162 \bibitem{SALOMON} Salomon M.H., Stecker F.J., Astrophys. J. 493 547 (1998)
    163 \bibitem{PRIMACK} Primack J.R., Sommerville R.S., MacMinn D., Astrophys. J. 11 93 (1999)
    164 \bibitem{ICRC} The MAGIC Telescope and the Observation of GRBs,
    165 Galante N. et al., Proceedings of the 28$^{th}$ ICRC, Tsukuba, Japan, 31\,July\ -\ 1\, August, 2003.
    166 \bibitem{NICOLA} Il Telescopio MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope)
    167 per l'osservazione dei Gamma Ray Bursts, Nicola Galante, tesi di laurea, July 2002.
    168 (available at: http://www.pd.infn.it/magic/publi.html)
    169166\bibitem{NICOLAGRB} http://www.pd.infn.it/magic/GRB/grb.html
    170167\bibitem{GCNARCHIVE} http://lheawww.gsfc.nasa.gov/docs/gamcosray/legr/bacodine/gcn3\_archive.html
    171168\bibitem{GOTZ} D. Gotz, S. Mereghetti 2002 Observation of Gamma-ray Bursts with INTEGRAL
    172 Contribution to the XXII Moriond Astrophysics Meeting, 
     169Contribution to the XXII Moriond Astrophysics Meeting,
    173170The Gamma Ray Universe, Les Arcs 9-16 March 2002.
    174 \bibitem{IBAS} IBAS Client Software, Users Manual, 
    175 available at: 
     171\bibitem{IBAS} IBAS Client Software, Users Manual,
     172available at:
    176173http://isdc.unige.ch/$\sim$isdc\_cms/icms/releases/public/ibas\_client/1.1.2/ibas\_client\_um-1.1.2.ps.gz
    177 \bibitem{HETE} 
     174\bibitem{HETE}
    178175(see also: http://space.mit.edu/HETE/mission\_status.htm \\
    179176           http://space.mit.edu/HETE/ban.html )
     
    182179\bibitem{SWIFT} The SWIFT homepage
    183180http://swift.gsfc.nasa.gov/science/
    184 \bibitem{SWIFT2} 
     181\bibitem{SWIFT2}
    185182http://swiftsc.gsfc.nasa.gov/docs/swift/swiftsc.html
    186183\end{thebibliography}
  • trunk/MagicSoft/GRB-Proposal/Introduction.tex

    r6002 r6097  
    11\section{Introduction}
    2 The MAGIC telescope has been designed especially light with a special focus on
    3 being able to react fastly to GRB alerts from the satellites.
    4 In \cite{design} and~\cite{PETRY},
    5 the objective was set to turn the telescope to the burst position in 10-30~s
    6 in order to have a fair chance of detecting a burst with the MAGIC telescope.
    7 The current possible value is 20 sec. for full turn-around
    8 %FIXME
    9 {\it \bf THIS HAS TO BE CHECKED FROM THOMAS B. !!}
     2
     3\subsection{Observation of GRBs}
     4
     5The MAGIC telescope has been designed especially light with a special focus on
     6being able to react quickly to GRB alerts from the satellites.
     7In \cite{design} and~\cite{PETRY},
     8the objective was set to turn the telescope to the burst position within 10-30~s
     9in order to have a fair chance of detecting a burst when the emission is still ongoing.
     10During the comissioning phase we have proven that our goal was reached.
     11The telescope is able to turn 180 degrees in azimuth and 160 degrees in zenith within 20s.\\
     12
     13
     14Very high energy (VHE) GRB observations have the potential to constrain the theoretical models
     15on both the prompt and extendend phases of GRB emission~\cite{HARTMANN,MANNHEIM,SALOMON}. Models based on both internal and external shocks predicts VHE fluence comperable to, or certain situations stronger than, the keV-MeV radiation, with duration ranging from shorter than the keV-MeV burst to extended TeV afterglows~\cite{DERMER, PILLA, ZHANG1}.
     16
    1017\par
    11 Several attempts have been made in the past to observe GRBs at energies
    12 from the GeV range upwards each indicating some excess over background but
    13 without stringent evidence. The only secured detection was performed by EGRET
    14 which detected seven GRBs emitting high energy photons in the
    15 100~MeV to 18~GeV range~\cite{EGRET}. There have been
    16 results suggesting gamma rays beyond the GeV range from the TIBET array~\cite{TIBET} and
    17 from HEGRA-AIROBICC~\cite{HEGRA}. Evidence for TeV emission of one burst was claimed by
    18 the MILAGRITO experiment~\cite{MILAGRO}. Recently, the GRAND array has reported some
    19 excess of observed muons during seven BATSE bursts~\cite{GRAND}. In this context, note
    20 especially a recent publication from the TASC detector on \eg~\cite{TASC},
    21 finding a high-energy spectral
    22 component presumably due to ultra-relativistic acceleration of hadrons and
    23 producing a spectral index of $-1$ with no cut-off up to the detector limit (200 MeV).
     18
     19In many publications, the possibility that more energetic $\gamma$-rays come along with the (low-energy) GRB, have been explored. Proton-synchrotron emission~\cite{TOTANI} have been suggested as well as photon-pion production~\cite{WAXMAN,BAHCALL,BOETTCHER} and inverse-Compton scattering in the burst environment~\cite{MESZAROS93,CHIANG,PILLA,ZHANG2}.
     20Long-term HE $\gamma$ emission from accelerated protons in forward-shock has been predicted in~\cite{LI}. This model predicts GeV inverse compton emission even one day after the burst.
     21Even considering pure electron-synchrotron radiation predicts measurable GeV emission for a significant fraction of GRBs~\cite{ZHANG2}.\\
     22
     23GeV energy emission in GRBs is particulary sensitive to the Lorentz factor and to the photon density of the emitting material - and thus to the distance of the radiating shock from the source - owing to $\gamma~\gamma \rightarrow$
     24\textit{e$^+$~e$^-$} absorption in the emission region. And, Comparison of the prompt GRB flux at $\sim$ 1GeV and $\sim$ 100keV may allow to determine the magnetic field strength~\cite{ASAF1}.
     25
    2426\par
    25 The nowadays most widely accepted model for gamma emission from GRB suggests a bursts
    26 environment involving collisions of an ultra-relativistic e$^+$-e$^-$
    27 plasma fireball~\cite{PAZCYNSKI,GOODMAN,SARI}. These fireballs may produce
    28 low-energy gamma rays either by ``internal'' collisions of multiple
    29 shocks~\cite{XU,REES} or by ``external'' collisions of a single shock
    30 with the ambient circum burst medium (CBM)~\cite{MESZAROS94}.
     27
     28Several attempts have been made in the past to observe GRBs at energies from the GeV range upwards, each indicating some excess over background but without stringent evidence. The only secured detection was performed by EGRET which detected seven GRBs emitting high energy (HE) photons in the 100~MeV to 18~GeV range~\cite{EGRET}. The data shows no evidence of a HE rollover in the GRB spectrum~\cite{DINGUS}. Recent results indicate that the spectrum of some GRBs contains a very hard, luminous, long-duration component~\cite{GONZALES}.
     29There have been results suggesting gamma rays beyond the GeV range from the TIBET air shower array
     30in coincidence with BATSE bursts~\cite{AMENOMORI}, rapid follow-up observations by the Whipple Air Cerenkov Telescope~\cite{CONNAUGHTON1}, and coincident and monitoring studies by HEGRA-AIROBICC~\cite{PADILLA}, Whipple~\cite{CONNAUGHTON2} and the Milagro prototype~\cite{MILAGRO}.
     31The GRAND array has reported some excess of observed muons during seven BATSE bursts~\cite{GRAND}. In this context, note especially the publication from the TASC detector on \eg~\cite{GONZALES},
     32finding a HE spectral component presumably due to ultra-relativistic acceleration
     33of hadrons and producing a spectral index of $-1$ with no cut-off up to the detector limit (200 MeV).\\
     34
     35Concerning estimates about the MAGIC observability of GRBs, a very detailed study of GRB spectra obtained from the third and fourth \ba catalogue has been made in~\cite{ICRC,NICOLA}. The spectra were extrapolated to \ma energies with a simple continuation of the observed high-energy power law behaviour and the calculated fluxes compared with \ma sensitivities. Setting conservative cuts on observation times and significances,
     36and assuming an energy threshold of 15~GeV, a GRB detection rate of $0.5-2$ per year
     37was obtained for an assumed observation delay between 15 and 60 sec. and a BATSE trigger rate ($\sim 360/year$).
     38
     39Taking into account the local rate of GRBs estimated in~\cite{GUETTA}, an late afterglow emission from few tens of GRB's per year should be observable above our energy threshold. The model of Name~\cite{ASAF2} predict delayed GeV photon emission that should be significantly detectable by MAGIC in 100 seconds.
     40
     41\subsection{Observation of XRFs}
     42
     43While the major energy from the prompt GRBs is emitted in $\gamma$-rays ($E_p \sim$ 200~keV), XRFs are characterized
     44by peak energies below 50~keV and a dominated X-ray fluence. Because of similar properties a connection between XRFs and GRBs is strongly suggested. The most popular theories say that XRFs are produced from GRBs observed ''off-axis''.
     45Alternativly, an increase of the baryon load within the fireball itself or low efficiency shocks can produce XRFs. If there is a connection between the XRFs and GRBs, they should originate at low redshifts (z < 0.6).\\
     46
     47Gamma-ray satellites react in the same way on XRFs and GRBs. In case of a detection the coordinates are distributed to other observatories (see section 2.1). Only from later analysis the difference can be established.
     48
    3149\par
    32 In many publications,
    33 the possibility that more energetic gamma-rays come along with the (low-energy) gamma-ray
    34 burst, have been explored.
    35 Proton-synchrotron emission~\cite{TOTANI} have
    36 been suggested as well as photo-pion production~\cite{WAXMAN,BAHCALL,BOETTCHER}
    37 and inverse-Comption
    38 scattering in the burst environment~\cite{MESZAROS93,CHIANG,PILLA,ZHANG}.
    39 Long-term high-energy gamma emission from accelerated protons in forward-shock
    40 has been predicted in~\cite{LI}.
    41 Even considering pure electron-synchrotron radiation predicts measurable GeV emission for a
    42 significant fraction of GRBs~\cite{ZHANG}.
    43 Implications of the observation of a high-energy gamma-ray component on
    44 distance scale, energy production in the GRB and distinction between internal and
    45 external shock models have been treated in~\cite{HARTMANN,MANNHEIM,SALOMON,PRIMACK}.
    46 \par
    47 \ldots {\bf MORE ELABORATE TREATMENT OF HE-EMISSION: WHICH MODELS, WHAT TIME DIFFERENCE TO
    48 GRB, TIME DEVELOPMENT, EXPECTED FLUXES, SPECTRA } \ldots
    49 \par
    50 \ldots {\bf UPDATE CURRENT PAPERS} \ldots
    51 \par
    52 \par
    53 \ldots {\bf MORE DETAILED DESCRIPTION OF GEV-EMISSION MODELS }\ldots
    54 \par
    55 \par
    56 \ldots {\bf SATOKO AND MARKUS GARCZ.}\ldots
    57 \par
    58 In the year 2005, three satellites will produce GRB alerts: The \he
    59 satellite, launched in October 2000, the \ig satellite, launched October 2002 and the
    60 \sw satellite, launched in October, 2004 and expected to be fully operational in March, 2005.
    61 \par
    62 Concerning estimates about the MAGIC observability of GRBs, a very detailed study
    63 of GRB spectra obtained from the third and fourth \ba catalogue has been made
    64 in~\cite{ICRC,NICOLA}. The spectra were extrapolated to \ma energies with a simple continuation
    65 of the observed high-energy power law behaviour and the calculated fluxes compared
    66 with \ma sensitivities. Setting conservative cuts on observation times and significances,
    67 and assuming an energy threshold of 15~GeV, a GRB detection rate of $0.5--2$ per year
    68 was obtained for an assumed observation delay of 15~sec. and the \sw GRB trigger rate ($\sim 100/year$).
    6950
    70 \subsection{Observing XRFs}
     51In this case we include also observation of XRFs by MAGIC in our proposal.
    7152
    72 {\ldots \it \bf CAN BE MAYBE GO INTO A SEPARATE PROPOSAL  \ldots \\}
    7353
    74 \subsection{Observing SGRs}
    7554
    76 {\ldots \it \bf CAN BE MAYBE GO INTO A SEPARATE PROPOSAL  \ldots \\}
    77 
  • trunk/MagicSoft/GRB-Proposal/Requirements.tex

    r5968 r6097  
    11\section{Requirements to start the full GRB Observations}
     2
     3\subsection{Status now}
     4\subsection{What is still missing:}
    25
    36\ldots {\bf Communication AMC-CC } \ldots
     
    58\ldots {\bf Fast slewing } \ldots
    69
     10\ldots {\bf Test GRB Monitor } \ldots
     11\ldots {\bf Test fast telescope movement} \ldots
     12\ldots {\bf Simulation with fake alerts to ...CRAB???...} \ldots
     13
Note: See TracChangeset for help on using the changeset viewer.