Changeset 6378


Ignore:
Timestamp:
02/11/05 16:54:01 (20 years ago)
Author:
gaug
Message:
*** empty log message ***
Location:
trunk/MagicSoft/TDAS-Extractor
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Algorithms.tex

    r6371 r6378  
    599599\begin{equation}
    600600\tau=\frac{(e\tau)_{i_0^*}}{e_{i_0^*}}
     601\label{eq:offsettau}
    601602\end{equation}
    602603
     
    883884%%% TeX-master: "MAGIC_signal_reco.te"
    884885%%% TeX-master: "MAGIC_signal_reco.te"
     886%%% TeX-master: "MAGIC_signal_reco"
    885887%%% End:
  • trunk/MagicSoft/TDAS-Extractor/Pedestal.tex

    r6374 r6378  
    99\par
    1010
    11 By definition, the noise autocorrelation matrix $B$ and thus the ``pedestal RMS''
     11By definition, the $\boldsymbol{B}$ and thus the ``pedestal RMS''
    1212is independent from the signal extractor.
    1313
    14 \subsection{Bias and Error}
    15 
    16 Consider a large number of signals (FADC spectra), all with the same
    17 integrated charge $ST$ (true signal). By applying a signal extractor
    18 we obtain a distribution of extracted signals $SE$ (for fixed $ST$ and
     14\subsection{Bias and Mean-squared Error}
     15
     16Consider a large number of same signals $S$. By applying a signal extractor
     17we obtain a distribution of estimated signals $\widehat{S}$ (for fixed $S$ and
    1918fixed background fluctuations $BG$). The distribution of the quantity
    2019
    2120\begin{equation}
    22 X = SE-ST
    23 \end{equation}
    24 
    25 has the mean $B$ and the RMS $R$ defined by:
     21X = \widehat{S}-S
     22\end{equation}
     23
     24has the mean $B$ and the Variance $MSE$ defined as:
    2625
    2726\begin{eqnarray}
    28    B    &=& <X> \\
    29    R    &=& \sqrt{<(X-B)^2>}
     27   B   \ \ \ \  = \ \ \ \ \ \ <X> \ \ \ \ \  &=& \ \ <\widehat{S}> \ -\ S\\
     28   R   \ \ \ \  = \ <(X-B)^2> &=& \ Var[\widehat{S}]\\
     29   MSE \      = \ \ \ \ \ <X^2> \ \ \ \  &=& \ Var[\widehat{S}] +\ B^2
    3030\end{eqnarray}
    3131
    32 The parameter $B$ can be called the {\textit{\bf bias}} of the pedestal extractor and $R$
    33 the RMS of the distribution of $X$ which
    34 depend generally on the size of $ST$ and the size of the background fluctuations $BG$.
    35 
    36 \par
    37 
    38 For the normal image cleaning, knowledge of $B$ is sufficient and the
    39 error $R$ should be known in order to calculate a correct background probability.
    40 \par
    41 Also for the model analysis, $B$ and $R$ are needed if one wants to keep small
    42 signals.
     32The parameter $B$ is also called the {\textit{\bf BIAS}} of the estimator and $MSE$
     33the {\textit{\bf MEAN-SQUARED ERROR}} which combines the variance of $\widehat{S}$ and
     34the bias. Both depend generally on the size of $S$ and the background fluctuations $BG$,
     35thus: $B = B(S,BG)$ and $MSE = MSE(S,BG)$.
     36
     37\par
     38Usually, one measures easily the parameter $R$, but needs the $MSE$ for statistical analysis (e.g.
     39in the image cleaning).
     40However, only in case of a vanishing bias $B$, the two numbers are equal. Otherwise,
     41the bias $B$ has to be known beforehand. Note that every sliding window extractor has a
     42bias, especially at low or vanishing signals $S$.
    4343
    4444\subsection{Pedestal Fluctuations as Contribution to the Signal Fluctuations}
    4545
    46 In case of the calibration with the F-Factor methoid,
    47 the basic relation is:
    48 
    49 \begin{equation}
    50 \frac{(\Delta ST)^2}{<ST>^2} = \frac{1}{<n_{phe}>} * F^2
    51 \end{equation}
    52 
    53 Here $\Delta ST$ is the fluctuation of the true signal $ST$ due to the
    54 fluctuation of the number of photo-electrons. $ST$ is obtained from the
    55 measured fluctuations of $SE$  ($RMS_{SE}$) subtracting those contributions to the
    56 fluctuations of the
    57 extracted signal which are due to the fluctuation of the pedestal\footnote{%
     46A photo-multiplier signal yields, to a very good approximation, the
     47following relation:
     48
     49\begin{equation}
     50\frac{Var[Q]}{<Q>^2} = \frac{1}{<n_{phe}>} * F^2
     51\end{equation}
     52
     53Here, $Q$ is the signal fluctuation due to the number of signal photo-electrons
     54(equiv. to the signal $S$), and $Var[Q]$ the fluctuations of the true signal $Q$
     55due to the Poisson fluctuations of the number of photo-electrons. Because of:
     56
     57\begin{eqnarray}
     58\widehat{Q} &=& Q + X \\
     59Var(\widehat{Q}) &=& Var(Q) + Var(X) \\
     60Var(Q) &=& Var(\widehat{Q}) - Var(X)
     61\end{eqnarray}
     62
     63$Var[Q]$ can be obtained from:
     64
     65\begin{eqnarray}
     66Var(Q) &\approx& Var(\widehat{Q}) - Var(\widehat{Q}=0)
     67\label{eq:rmssubtraction}
     68\end{eqnarray}
     69
     70In the last line of eq.~\ref{eq:rmssubtraction}, it is assumed that $R$ does not dependent
     71on the signal height\footnote{%
    5872A way to check whether the right RMS has been subtracted is to make the
    5973``Razmick''-plot
    6074
    6175\begin{equation}
    62     \frac{(\Delta ST)^2}{<ST>^2} \quad \textit{vs.} \quad \frac{1}{<ST>}
     76    \frac{Var[\widehat{Q}]}{<\widehat{Q}>^2} \quad \textit{vs.} \quad \frac{1}{<\widehat{Q}>}
    6377\end{equation}
    6478
     
    7084\end{equation}
    7185
    72 where $c$ is the photon/ADC conversion factor  $<ST>/<m_{pe}>$.}.
    73 
    74 \begin{equation}
    75  (\Delta ST)^2 = RMS_{SE}^2 - R^2
    76 \label{eq:rmssubtraction}
    77 \end{equation}
    78 
    79 If $R$ does not dependent on the signal height, (as it is the case
    80 for the digital filter, eq.~\ref{eq:of_noise}), then one can retrieve $R$ by
    81 applying the signal extractor on a {\textit{\bf fixed window}} of pedestal events.
    82 
    83 \subsection{Methods to Retrieve Bias $B$ and Errors $R$}
    84 
    85 $R$ is in general different from the pedestal RMS. It cannot be
    86 obtained by applying the signal extractor to pedestal events, especially
    87 for large signals (e.g. calibration signals).
    88 \par
    89 In the case of the digital filter, $R$ is in theory independent from the
    90 signal amplitude $ST$ and depends only on the background $BG$ (eq.~\ref{eq:of_noise}).
    91 It can be obtained from the
    92 fitted error of the extracted signal ($\Delta(SE)_{fitted}$),
    93 which one can calculate for every event or by applying the extractor to a fixed window
    94 of pure background events (``pedestal events'').
    95 
    96 \par
    97 
    98 In order to get the missing information, we did the following investigations:
     86where $c$ is the photon/ADC conversion factor  $<Q>/<m_{pe}>$.}
     87(as is the case
     88for the digital filter, eq.~\ref{eq:of_noise}). One can then retrieve $R$
     89by applying the signal extractor to a {\textit{\bf fixed window}} of pedestal events, where the
     90bias vanishes and measure $Var[\widehat{Q}=0]$.
     91
     92\subsection{Methods to Retrieve Bias and Mean-Squared Error}
     93
     94In general, the extracted signal variance $R$ is different from the pedestal RMS.
     95It cannot be obtained by applying the signal extractor to pedestal events, because of the
     96(unknown) bias.
     97\par
     98In the case of the digital filter, $R$ is expected to be independent from the
     99signal amplitude $S$ and depends only on the background $BG$ (eq.~\ref{eq:of_noise}).
     100It can then be obtained from the calculation of the variance $Var[\widehat{Q}]$
     101by applying the extractor to a fixed window of pure background events (``pedestal events'')
     102and get rid of the bias in that way. Figures~\ref{fig:amp:relmean} through~\ref{fig:df:relmean}
     103show that the bias vanishes indeed for the used extractors in this TDAS.
     104
     105\begin{figure}[htp]
     106\centering
     107\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RelMean.eps}
     108\vspace{\floatsep}
     109\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RelMean.eps}
     110\vspace{\floatsep}
     111\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RelMean.eps}
     112\caption{MExtractTimeAndChargeSpline with amplitude extraction:
     113Difference in mean pedestal (per FADC slice) between extraction algorithm
     114applied on a fixed window of 1 FADC slice (``extractor random'') and a simple addition of
     1152 FADC slices (``fundamental''). On the top, a run with closed camera has been taken, in the center
     116 an opened camera observing an extra-galactic star field and on the bottom, an open camera being
     117illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one
     118pixel.}
     119\label{fig:amp:relmean}
     120\end{figure}
     121
     122
     123\begin{figure}[htp]
     124\centering
     125\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RelMean.eps}
     126\vspace{\floatsep}
     127\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RelMean.eps}
     128\vspace{\floatsep}
     129\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RelMean.eps}
     130\caption{MExtractTimeAndChargeSpline with integral over 2 slices:
     131Difference in mean pedestal (per FADC slice) between extraction algorithm
     132applied on a fixed window of 2 FADC slices (``extractor random'') and a simple addition of
     1332 FADC slices (``fundamental''). On the top, a run with closed camera has been taken, in the center
     134 an opened camera observing an extra-galactic star field and on the bottom, an open camera being
     135illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one
     136pixel.}
     137\label{fig:int:relmean}
     138\end{figure}
     139
     140\begin{figure}[htp]
     141\centering
     142\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RelMean.eps}
     143\vspace{\floatsep}
     144\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RelMean.eps}
     145\vspace{\floatsep}
     146\includegraphics[height=0.3\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RelMean.eps}
     147\caption{MExtractTimeAndChargeDigitalFilter:
     148Difference in mean pedestal (per FADC slice) between extraction algorithm
     149applied on a fixed window of 6 FADC slices and time-randomized weights (``extractor random'')
     150and a simple addition of
     1516 FADC slices (``fundamental''). On the top, a run with closed camera has been taken, in the center
     152 an opened camera observing an extra-galactic star field and on the bottom, an open camera being
     153illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one
     154pixel.}
     155\label{fig:df:relmean}
     156\end{figure}
     157
     158%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     159
     160In order to calculate bias and Mean-squared error, we proceeded in the following ways:
    99161\begin{enumerate}
    100162\item Determine $R$ by applying the signal extractor to a fixed window
    101163    of pedestal events. The background fluctuations can be simulated with different
    102164    levels of night sky background and the continuous light source, but no signal size
    103     dependency can be retrieved with the method.
    104 \item Determine bias $B$ and resolution $R$ from MC events with and without added noise.
    105     Assuming that $R$ and $B$ are negligible for the events without noise, one can
     165    dependency can be retrieved with this method.
     166\item Determine $B$ and $MSE$ from MC events with and without added noise.
     167    Assuming that $MSE$ and $B$ are negligible for the events without noise, one can
    106168    get a dependency of both values from the size of the signal.
    107 \item Determine $R$ from the fitted error of $SE$, which is possible for the
     169\item Determine $MSE$ from the fitted error of $\widehat{S}$, which is possible for the
    108170    fit and the digital filter (eq.~\ref{eq:of_noise}).
    109171    In prinicple, all dependencies can be retrieved with this method.
     
    114176
    115177By applying the signal extractor to a fixed window of pedestal events, we
    116 determine the parameter $R$ for the case of no signal ($ST = 0$). In the case of
    117 all extractors using a fixed window from the beginning (extractors nr. \#1 to \#22
    118 in section~\ref{sec:algorithms}), the results are by construction the same as calculating
    119 the pedestal RMS.
    120 \par
    121 In MARS, this possibility is implemented with a function-call to: \\
    122 
    123 {\textit{\bf MJPedestal::SetExtractionWithExtractorRndm()}}. \\
    124 
    125 In the case of the {\textit{\bf amplitude extracting spline}} (extractor nr. \#23), we placed the
    126 spline maximum value (which determines the exact extraction window) at a random place
    127 within the digitizing binning resolution of one central FADC slice.
    128 In the case of the {\textit{\bf digital filter}} (extractor nr. \#28), the time shift was 
    129 randomized for each event within a fixed global extraction window.
    130 
    131 \par
     178determine the parameter $R$ for the case of no signal ($Q = 0$). In the case of
     179extractors using a fixed window (extractors nr. \#1 to \#22
     180in section~\ref{sec:algorithms}), the results are the same by construction
     181as calculating the pedestal RMS.
     182\par
     183In MARS, this functionality is implemented with a function-call to: \\
     184
     185{\textit{\bf MJPedestal::SetExtractionWithExtractorRndm()}} and/or \\
     186{\textit{\bf MExtractPedestal::SetRandomCalculation()}}\\
     187
     188Besides fixing the global extraction window, additionally the following steps are undertaken
     189in order to assure that the bias vanishes:
     190
     191\begin{description}
     192\item[\textit{MExtractTimeAndChargeSpline}:\xspace] The spline
     193maximum position -- which determines the exact extraction window -- is placed arbitrarily
     194at a random place within the digitizing binning resolution of one central FADC slice.
     195\item[{\textit{MExtractTimeAndChargeDigitalFilter}:\xspace] The second step timing
     196offset $\tau$ (eq.~\ref{eq:offsettau} gets randomized for each event.
     197\end{description}
    132198
    133199The following plots~\ref{fig:sw:distped} through~\ref{fig:amp:relrms:run38996} show results
     
    212278
    213279
    214 \begin{figure}[htp]
    215 \centering
    216 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RelMean.eps}
    217 \vspace{\floatsep}
    218 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RelMean.eps}
    219 \vspace{\floatsep}
    220 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RelMean.eps}
    221 \caption{MExtractTimeAndChargeSpline with amplitude extraction:
    222 Difference in mean pedestal (per FADC slice) between extraction algorithm
    223 applied on a fixed window of 1 FADC slice (``extractor random'') and a simple addition of
    224 2 FADC slices (``fundamental''). On the top, a run with closed camera has been taken, in the center
    225  an opened camera observing an extra-galactic star field and on the bottom, an open camera being
    226 illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one
    227 pixel.}
    228 \label{fig:amp:relmean}
    229 \end{figure}
    230 
    231 
    232 \begin{figure}[htp]
    233 \centering
    234 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RelMean.eps}
    235 \vspace{\floatsep}
    236 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RelMean.eps}
    237 \vspace{\floatsep}
    238 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RelMean.eps}
    239 \caption{MExtractTimeAndChargeSpline with integral over 2 slices:
    240 Difference in mean pedestal (per FADC slice) between extraction algorithm
    241 applied on a fixed window of 2 FADC slices (``extractor random'') and a simple addition of
    242 2 FADC slices (``fundamental''). On the top, a run with closed camera has been taken, in the center
    243  an opened camera observing an extra-galactic star field and on the bottom, an open camera being
    244 illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one
    245 pixel.}
    246 \label{fig:int:relmean}
    247 \end{figure}
    248 
    249 \begin{figure}[htp]
    250 \centering
    251 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RelMean.eps}
    252 \vspace{\floatsep}
    253 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RelMean.eps}
    254 \vspace{\floatsep}
    255 \includegraphics[height=0.3\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RelMean.eps}
    256 \caption{MExtractTimeAndChargeDigitalFilter:
    257 Difference in mean pedestal (per FADC slice) between extraction algorithm
    258 applied on a fixed window of 6 FADC slices and time-randomized weights (``extractor random'')
    259 and a simple addition of
    260 6 FADC slices (``fundamental''). On the top, a run with closed camera has been taken, in the center
    261  an opened camera observing an extra-galactic star field and on the bottom, an open camera being
    262 illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one
    263 pixel.}
    264 \label{fig:df:relmean}
    265 \end{figure}
    266 
    267 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     280%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1
    268281
    269282\begin{figure}[htp]
     
    324337%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    325338
    326 Figures~\ref{fig:df:distped}
     339Figures~\ref{fig:df:distped},~\ref{fig:amp:distped}
    327340and~\ref{fig:amp:distped} show the
    328341extracted pedestal distributions for the digital filter with cosmics weights (extractor~\#28) and the
Note: See TracChangeset for help on using the changeset viewer.