Changeset 6562 for trunk/MagicSoft


Ignore:
Timestamp:
02/17/05 10:00:23 (20 years ago)
Author:
gaug
Message:
*** empty log message ***
Location:
trunk/MagicSoft/TDAS-Extractor
Files:
53 added
5 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Calibration.tex

    r6538 r6562  
    585585\subsection{Time Resolution}
    586586
    587 The extractors \#17--39 are able to compute the arrival time of each pulse. The calibration LEDs
     587The extractors \#17--33 are able to compute the arrival time of each pulse. The calibration LEDs
    588588deliver a fast-rising pulses, uniform over the camera in signal size and time.
    589589We estimate the time-uniformity to better
     
    608608\end{equation}
    609609
    610 Figures~\ref{fig:reltimesinnerleduv} shows the distributions of $\delta t_i$
     610Figures~\ref{fig:reltimesinnerleduv} show distributions of $\delta t_i$
    611611for a typical inner pixel and a non-saturating calibration pulse of UV-light,
    612612obtained with six different extractors.
    613613One can see that all of them yield acceptable Gaussian distributions,
    614614except for the sliding window extracting 2 slices which shows a three-peak structure and cannot be fitted.
    615 We discarded that particular extractor from the further studies.
     615We discarded that particular extractor from the further studies of this section.
    616616
    617617\begin{figure}[htp]
     
    632632
    633633Figures~\ref{fig:reltimesinnerledblue1} and~\ref{fig:reltimesinnerledblue2} show
    634 the distributions of $\delta t_i$ for a typical inner pixel and a saturating calibration
     634the distributions of $\delta t_i$ for a typical inner pixel and an intense, high-gain-saturating calibration
    635635pulse of blue light.
    636636One can see that the sliding window extractors yield double Gaussian structures, except for the
  • trunk/MagicSoft/TDAS-Extractor/Criteria.tex

    r6559 r6562  
    77in the signal extraction algorithms and the subsequent image cleaning.
    88\par
    9 In the image analysis, one hake the decision whether the extracted signal of a certain pixel is considered as signal or background.
     9In the image analysis, one takes the decision whether the extracted signal of a certain pixel is considered as signal or background.
    1010Those considered as signal are further used to compute the image parameters while the background ones are simply rejected. The calculation
    1111of the second moments of the image ``ellipse'' usually fails when applied to un-cleaned images, therefore the decision is yes or no. Moreover,
  • trunk/MagicSoft/TDAS-Extractor/Introduction.tex

    r6511 r6562  
    22
    33
    4 The MAGIC telescope aims to study the gamma ray emission from high energy phenomena and the violent physics processes in the universe at the lowest energy threshold possible \cite{low_energy}.
    5 
    6 
     4The MAGIC telescope aims to study the gamma ray emission from high energy phenomena and the violent physics processes in the universe
     5at the lowest energy threshold possible \cite{low_energy}.
    76
    87Figure~\ref{fig:MAGIC_read-out_scheme} shows a sketch of the MAGIC read-out scheme, including the PMT camera,
     
    5251This note is structured as follows: In section 2 the average pulse shapes are reconstructed from the recorded FADC samples for calibration and cosmics pulses. These pulse shapes are compared with the pulse shape implemented in the MC. In section 3 different signal reconstruction algorithms and their implementation in the common MAGIC software framework MARS are reviewed. In section 4 criteria for an optimal signal reconstruction are developed. Thereafter the signal extraction algorithms under study are applied to pedestal, calibration and MC events in sections 5 to 7. The CPU requirements of the different algorithms are compared in section 8. Finally in section 9 the results are summarized and in section 10 a standard signal extraction algorithm for MAGIC is proposed.
    5352
     53\subsection{Characteristics of the current read-out system}
    5454
     55The following intrinsic characteristics of the current read-out system affect especially the signal reconstruction:
    5556
    56 \par
     57\begin{description}
     58\item[Inner and Outer pixels:\xspace] The MAGIC camera has two types of pixels which incorporate the following differences:
     59\begin{enumerate}
     60\item Size: The outer pixels have a factor four bigger area then the inner pixels~\cite{MAGIC-design}.
     61Their (quantum-efficiency convoluted) effective area is about a factor 2.6 higher.
     62\item Gain: The camera is flat-fielded in order to yield a similiar reconstructed charge signal for the same photon illumination intensity.
     63In order to achieve this, the gain of the inner pixels has been adjusted to about a factor 2.6 higher than the outer
     64ones~\cite{tdas-calibration}. This results in lower effective noise charge from the night sky background for the outer pixels.
     65\item Delay: The signal of the outer pixels is delayed by about 1.5\,ns with respect to the inner ones.
     66\end{enumerate}
     67\item[Clock noise:\xspace] The MAGIC 300\,MHz FADCs have an intrinsic clock noise of a few LSBs occurring with a frequency of 150\,MHz.
     68This clock noise results
     69in a superimposed AB-pattern for the read-out pedestals. In the standard analysis, the amplitude of this clock noise gets measured in the
     70pedestal extraction algorithms and further corrected for by all signal extractors.
     71\item[Trigger Jitter:\xspace] The FADC clock is not synchronized with the trigger. Therefore, the relative position of the recorded
     72signal samples varies uniformely by one FADC slice with respect to the position of the signal shape by one FADC slice from event to event.
     73\item[DAQ jumps:\xspace] Unfortunately, the position of the signal pulse with respect to the first recorded FADC sample is not constant.
     74It varies randomly by an integer number of FADC slices -- typically two -- in about 1\% of the channels per event.
    5775
    58 \ldots {\textit{STILL MISSING:} \ldots
    59 \begin{itemize}
    60 \item DAQ jumps
    61 \item clock noise
    62 \item inner and outer pixels
    63 \end{itemize}
    64 
    65 } \ldots
    66 
    67 
     76\end{description}
    6877
    6978%%% Local Variables:
  • trunk/MagicSoft/TDAS-Extractor/MAGIC_signal_reco.bbl

    r6511 r6562  
    2424\newblock Prepared for International Symposium: The Universe Viewed in Gamma
    2525  Rays, Kashiwa, Chiba, Japan, 25-28 Sep 2002.
     26
     27\bibitem{MAGIC-design}
     28J.~A. Barrio, \ et~al. (MAGIC Collab.),
     29\newblock {\em The MAGIC Telescope -- Design Study for the Construction of a
     30  17\,m Cherenkov Telescope for Gamma Astronomy above 10\,GeV},
     31\newblock (1998), MPI-PhE 98-05.
     32
     33\bibitem{tdas-calibration}
     34M.~Gaug~et al.,
     35\newblock {\em TDAS Analysis of The Calibration Data}, 2005,
     36\newblock in progress.
    2637
    2738\bibitem{MC-Camera}
     
    7384\newblock http://wwwmagic.mppmu.mpg.de/publications/theses/David\_thesis.ps.gz.
    7485
    75 \bibitem{tdas-calibration}
    76 M.~Gaug~et al.,
    77 \newblock {\em TDAS Analysis of The Calibration Data}, 2005,
    78 \newblock in progress.
    79 
    8086\end{thebibliography}
  • trunk/MagicSoft/TDAS-Extractor/MonteCarlo.tex

    r6410 r6562  
    11\section{Monte Carlo \label{sec:mc}}
     2
     3Comparing MC signal with and w/o noise for high and low gain pulses.
     4
     5\begin{figure}[htp]%%[t!]
     6\centering
     7  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_HiGain.eps}
     8\vspace{\floatsep}
     9  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_HiGain.eps}
     10\vspace{\floatsep}
     11  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_LoGain.eps}
     12\vspace{\floatsep}
     13  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_LoGain.eps}
     14\caption{Time Resolution for Sliding extractors in deifferent window sizes for low (down) and high (upper)
     15gain contribution, with (right) and with out (left) noise.}
     16\label{TimeRes_SlidW}
     17\end{figure}
     18
     19\begin{figure}[htp]
     20\centering
     21  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_HiGain.eps}
     22\vspace{\floatsep}
     23  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_HiGain.eps}
     24\vspace{\floatsep}
     25  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_LoGain.eps}
     26\vspace{\floatsep}
     27  \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_LoGain.eps}
     28\caption{Time Resolution for Splines and Digital Filter extractors for low (down) and high (upper) 
     29gain contribution, with (right) and with out (left) noise.}
     30\label{TimeRes_DFSpline}
     31\end{figure}
     32
     33\begin{figure}[htp]%%[t!]
     34\centering
     35  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps}
     36  \vspace{\floatsep}
     37  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps}
     38  \vspace{\floatsep}
     39  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps}
     40  \vspace{\floatsep}
     41  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
     42\caption{ Charge divided by number of photoelectrons versus the number of photoelectrons, for fixed window extractors
     43in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     44\label{ChargeDivNphe_FixW}
     45\end{figure}
     46
     47\begin{figure}[htp]
     48\centering
     49  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps}
     50  \vspace{\floatsep}
     51  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps}
     52  \vspace{\floatsep}
     53  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps}
     54  \vspace{\floatsep}
     55  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps}
     56\caption{ Charge divided by number of photoelectrons versus the number of photoelectrons, for sliding window extractors
     57in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     58\label{ChargeDivNphe_SlidW}
     59\end{figure}
     60
     61\begin{figure}[htp]
     62\centering
     63  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps}
     64  \vspace{\floatsep}
     65  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps}
     66  \vspace{\floatsep}
     67  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps}
     68  \vspace{\floatsep}
     69  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps}
     70\caption{ Charge divided by number of photoelectrons versus the number of photoelectrons, for spline and
     71digital filter extractors
     72in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     73\label{ChargeDivNphe_DFSpline}
     74\end{figure}
     75
     76\begin{figure}[htp]%%[t!]
     77\centering
     78  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps}
     79  \vspace{\floatsep}
     80  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps}
     81  \vspace{\floatsep}
     82  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps}
     83  \vspace{\floatsep}
     84  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps}
     85\caption{ Charge divided by the conversion factor minus the number of photoelectrons
     86versus the number of photoelectrons, for fixed window extractors
     87in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     88\label{ConversionvsNphe_FixW}
     89\end{figure}
     90
     91\begin{figure}[htp]
     92\centering
     93  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps}
     94  \vspace{\floatsep}
     95  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps}
     96  \vspace{\floatsep}
     97  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps}
     98  \vspace{\floatsep}
     99  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps}
     100\caption{ Charge divided by the conversion factor minus the number of photoelectrons 
     101versus the number of photoelectrons, for sliding window extractors
     102in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     103\label{ConversionvsNphe_SlidW}
     104\end{figure}
     105
     106\begin{figure}[htp]
     107\centering
     108  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps}
     109  \vspace{\floatsep}
     110  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps}
     111  \vspace{\floatsep}
     112  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps}
     113  \vspace{\floatsep}
     114  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps}
     115\caption{ Charge divided by the conversion factor minus the number of photoelectrons
     116versus the number of photoelectrons, for spline and
     117digital filter extractors
     118in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     119\label{ConversionvsNphe_DFSpline}
     120\end{figure}
     121
     122\begin{figure}[htp]
     123\centering
     124  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_HiGain.eps}
     125  \vspace{\floatsep}
     126  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_HiGain.eps}
     127  \vspace{\floatsep}
     128  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_LoGain.eps}
     129  \vspace{\floatsep}
     130  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_LoGain.eps}
     131\caption{ Charge resolution versus the number of photoelectrons, for fixed window and spline extractors
     132in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     133\label{ChargeRes_FixW}
     134\end{figure}
     135
     136\begin{figure}[htp]
     137\centering
     138  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_HiGain.eps}
     139  \vspace{\floatsep}
     140  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_HiGain.eps}
     141  \vspace{\floatsep}
     142  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_LoGain.eps}
     143  \vspace{\floatsep}
     144  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_LoGain.eps}
     145\caption{ Charge resolution versus the number of photoelectrons, for sliding extractors
     146in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     147\label{ChargeRes_SlidW}
     148\end{figure}
     149
     150\begin{figure}[htp]
     151\centering
     152  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_HiGain.eps}
     153  \vspace{\floatsep}
     154  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_HiGain.eps}
     155  \vspace{\floatsep}
     156  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_LoGain.eps}
     157  \vspace{\floatsep}
     158  \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_LoGain.eps}
     159\caption{ Charge resolution versus the number of photoelectrons, for spline and
     160digital filter extractors
     161in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.}
     162\label{ChargeRes_DFSpline}
     163\end{figure}
     164
     165
    2166
    3167%%% Local Variables:
Note: See TracChangeset for help on using the changeset viewer.