Changeset 6562 for trunk/MagicSoft
- Timestamp:
- 02/17/05 10:00:23 (20 years ago)
- Location:
- trunk/MagicSoft/TDAS-Extractor
- Files:
-
- 53 added
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Calibration.tex
r6538 r6562 585 585 \subsection{Time Resolution} 586 586 587 The extractors \#17--3 9are able to compute the arrival time of each pulse. The calibration LEDs587 The extractors \#17--33 are able to compute the arrival time of each pulse. The calibration LEDs 588 588 deliver a fast-rising pulses, uniform over the camera in signal size and time. 589 589 We estimate the time-uniformity to better … … 608 608 \end{equation} 609 609 610 Figures~\ref{fig:reltimesinnerleduv} show s thedistributions of $\delta t_i$610 Figures~\ref{fig:reltimesinnerleduv} show distributions of $\delta t_i$ 611 611 for a typical inner pixel and a non-saturating calibration pulse of UV-light, 612 612 obtained with six different extractors. 613 613 One can see that all of them yield acceptable Gaussian distributions, 614 614 except for the sliding window extracting 2 slices which shows a three-peak structure and cannot be fitted. 615 We discarded that particular extractor from the further studies .615 We discarded that particular extractor from the further studies of this section. 616 616 617 617 \begin{figure}[htp] … … 632 632 633 633 Figures~\ref{fig:reltimesinnerledblue1} and~\ref{fig:reltimesinnerledblue2} show 634 the distributions of $\delta t_i$ for a typical inner pixel and a 634 the distributions of $\delta t_i$ for a typical inner pixel and an intense, high-gain-saturating calibration 635 635 pulse of blue light. 636 636 One can see that the sliding window extractors yield double Gaussian structures, except for the -
trunk/MagicSoft/TDAS-Extractor/Criteria.tex
r6559 r6562 7 7 in the signal extraction algorithms and the subsequent image cleaning. 8 8 \par 9 In the image analysis, one hakethe decision whether the extracted signal of a certain pixel is considered as signal or background.9 In the image analysis, one takes the decision whether the extracted signal of a certain pixel is considered as signal or background. 10 10 Those considered as signal are further used to compute the image parameters while the background ones are simply rejected. The calculation 11 11 of the second moments of the image ``ellipse'' usually fails when applied to un-cleaned images, therefore the decision is yes or no. Moreover, -
trunk/MagicSoft/TDAS-Extractor/Introduction.tex
r6511 r6562 2 2 3 3 4 The MAGIC telescope aims to study the gamma ray emission from high energy phenomena and the violent physics processes in the universe at the lowest energy threshold possible \cite{low_energy}. 5 6 4 The MAGIC telescope aims to study the gamma ray emission from high energy phenomena and the violent physics processes in the universe 5 at the lowest energy threshold possible \cite{low_energy}. 7 6 8 7 Figure~\ref{fig:MAGIC_read-out_scheme} shows a sketch of the MAGIC read-out scheme, including the PMT camera, … … 52 51 This note is structured as follows: In section 2 the average pulse shapes are reconstructed from the recorded FADC samples for calibration and cosmics pulses. These pulse shapes are compared with the pulse shape implemented in the MC. In section 3 different signal reconstruction algorithms and their implementation in the common MAGIC software framework MARS are reviewed. In section 4 criteria for an optimal signal reconstruction are developed. Thereafter the signal extraction algorithms under study are applied to pedestal, calibration and MC events in sections 5 to 7. The CPU requirements of the different algorithms are compared in section 8. Finally in section 9 the results are summarized and in section 10 a standard signal extraction algorithm for MAGIC is proposed. 53 52 53 \subsection{Characteristics of the current read-out system} 54 54 55 The following intrinsic characteristics of the current read-out system affect especially the signal reconstruction: 55 56 56 \par 57 \begin{description} 58 \item[Inner and Outer pixels:\xspace] The MAGIC camera has two types of pixels which incorporate the following differences: 59 \begin{enumerate} 60 \item Size: The outer pixels have a factor four bigger area then the inner pixels~\cite{MAGIC-design}. 61 Their (quantum-efficiency convoluted) effective area is about a factor 2.6 higher. 62 \item Gain: The camera is flat-fielded in order to yield a similiar reconstructed charge signal for the same photon illumination intensity. 63 In order to achieve this, the gain of the inner pixels has been adjusted to about a factor 2.6 higher than the outer 64 ones~\cite{tdas-calibration}. This results in lower effective noise charge from the night sky background for the outer pixels. 65 \item Delay: The signal of the outer pixels is delayed by about 1.5\,ns with respect to the inner ones. 66 \end{enumerate} 67 \item[Clock noise:\xspace] The MAGIC 300\,MHz FADCs have an intrinsic clock noise of a few LSBs occurring with a frequency of 150\,MHz. 68 This clock noise results 69 in a superimposed AB-pattern for the read-out pedestals. In the standard analysis, the amplitude of this clock noise gets measured in the 70 pedestal extraction algorithms and further corrected for by all signal extractors. 71 \item[Trigger Jitter:\xspace] The FADC clock is not synchronized with the trigger. Therefore, the relative position of the recorded 72 signal samples varies uniformely by one FADC slice with respect to the position of the signal shape by one FADC slice from event to event. 73 \item[DAQ jumps:\xspace] Unfortunately, the position of the signal pulse with respect to the first recorded FADC sample is not constant. 74 It varies randomly by an integer number of FADC slices -- typically two -- in about 1\% of the channels per event. 57 75 58 \ldots {\textit{STILL MISSING:} \ldots 59 \begin{itemize} 60 \item DAQ jumps 61 \item clock noise 62 \item inner and outer pixels 63 \end{itemize} 64 65 } \ldots 66 67 76 \end{description} 68 77 69 78 %%% Local Variables: -
trunk/MagicSoft/TDAS-Extractor/MAGIC_signal_reco.bbl
r6511 r6562 24 24 \newblock Prepared for International Symposium: The Universe Viewed in Gamma 25 25 Rays, Kashiwa, Chiba, Japan, 25-28 Sep 2002. 26 27 \bibitem{MAGIC-design} 28 J.~A. Barrio, \ et~al. (MAGIC Collab.), 29 \newblock {\em The MAGIC Telescope -- Design Study for the Construction of a 30 17\,m Cherenkov Telescope for Gamma Astronomy above 10\,GeV}, 31 \newblock (1998), MPI-PhE 98-05. 32 33 \bibitem{tdas-calibration} 34 M.~Gaug~et al., 35 \newblock {\em TDAS Analysis of The Calibration Data}, 2005, 36 \newblock in progress. 26 37 27 38 \bibitem{MC-Camera} … … 73 84 \newblock http://wwwmagic.mppmu.mpg.de/publications/theses/David\_thesis.ps.gz. 74 85 75 \bibitem{tdas-calibration}76 M.~Gaug~et al.,77 \newblock {\em TDAS Analysis of The Calibration Data}, 2005,78 \newblock in progress.79 80 86 \end{thebibliography} -
trunk/MagicSoft/TDAS-Extractor/MonteCarlo.tex
r6410 r6562 1 1 \section{Monte Carlo \label{sec:mc}} 2 3 Comparing MC signal with and w/o noise for high and low gain pulses. 4 5 \begin{figure}[htp]%%[t!] 6 \centering 7 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_HiGain.eps} 8 \vspace{\floatsep} 9 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_HiGain.eps} 10 \vspace{\floatsep} 11 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_LoGain.eps} 12 \vspace{\floatsep} 13 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_LoGain.eps} 14 \caption{Time Resolution for Sliding extractors in deifferent window sizes for low (down) and high (upper) 15 gain contribution, with (right) and with out (left) noise.} 16 \label{TimeRes_SlidW} 17 \end{figure} 18 19 \begin{figure}[htp] 20 \centering 21 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_HiGain.eps} 22 \vspace{\floatsep} 23 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_HiGain.eps} 24 \vspace{\floatsep} 25 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_LoGain.eps} 26 \vspace{\floatsep} 27 \includegraphics[width=0.38\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_LoGain.eps} 28 \caption{Time Resolution for Splines and Digital Filter extractors for low (down) and high (upper) 29 gain contribution, with (right) and with out (left) noise.} 30 \label{TimeRes_DFSpline} 31 \end{figure} 32 33 \begin{figure}[htp]%%[t!] 34 \centering 35 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps} 36 \vspace{\floatsep} 37 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps} 38 \vspace{\floatsep} 39 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps} 40 \vspace{\floatsep} 41 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps} 42 \caption{ Charge divided by number of photoelectrons versus the number of photoelectrons, for fixed window extractors 43 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 44 \label{ChargeDivNphe_FixW} 45 \end{figure} 46 47 \begin{figure}[htp] 48 \centering 49 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps} 50 \vspace{\floatsep} 51 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps} 52 \vspace{\floatsep} 53 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps} 54 \vspace{\floatsep} 55 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps} 56 \caption{ Charge divided by number of photoelectrons versus the number of photoelectrons, for sliding window extractors 57 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 58 \label{ChargeDivNphe_SlidW} 59 \end{figure} 60 61 \begin{figure}[htp] 62 \centering 63 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps} 64 \vspace{\floatsep} 65 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps} 66 \vspace{\floatsep} 67 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps} 68 \vspace{\floatsep} 69 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps} 70 \caption{ Charge divided by number of photoelectrons versus the number of photoelectrons, for spline and 71 digital filter extractors 72 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 73 \label{ChargeDivNphe_DFSpline} 74 \end{figure} 75 76 \begin{figure}[htp]%%[t!] 77 \centering 78 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps} 79 \vspace{\floatsep} 80 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps} 81 \vspace{\floatsep} 82 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps} 83 \vspace{\floatsep} 84 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps} 85 \caption{ Charge divided by the conversion factor minus the number of photoelectrons 86 versus the number of photoelectrons, for fixed window extractors 87 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 88 \label{ConversionvsNphe_FixW} 89 \end{figure} 90 91 \begin{figure}[htp] 92 \centering 93 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps} 94 \vspace{\floatsep} 95 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps} 96 \vspace{\floatsep} 97 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps} 98 \vspace{\floatsep} 99 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps} 100 \caption{ Charge divided by the conversion factor minus the number of photoelectrons 101 versus the number of photoelectrons, for sliding window extractors 102 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 103 \label{ConversionvsNphe_SlidW} 104 \end{figure} 105 106 \begin{figure}[htp] 107 \centering 108 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps} 109 \vspace{\floatsep} 110 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps} 111 \vspace{\floatsep} 112 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps} 113 \vspace{\floatsep} 114 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps} 115 \caption{ Charge divided by the conversion factor minus the number of photoelectrons 116 versus the number of photoelectrons, for spline and 117 digital filter extractors 118 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 119 \label{ConversionvsNphe_DFSpline} 120 \end{figure} 121 122 \begin{figure}[htp] 123 \centering 124 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_HiGain.eps} 125 \vspace{\floatsep} 126 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_HiGain.eps} 127 \vspace{\floatsep} 128 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_LoGain.eps} 129 \vspace{\floatsep} 130 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_LoGain.eps} 131 \caption{ Charge resolution versus the number of photoelectrons, for fixed window and spline extractors 132 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 133 \label{ChargeRes_FixW} 134 \end{figure} 135 136 \begin{figure}[htp] 137 \centering 138 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_HiGain.eps} 139 \vspace{\floatsep} 140 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_HiGain.eps} 141 \vspace{\floatsep} 142 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_LoGain.eps} 143 \vspace{\floatsep} 144 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_LoGain.eps} 145 \caption{ Charge resolution versus the number of photoelectrons, for sliding extractors 146 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 147 \label{ChargeRes_SlidW} 148 \end{figure} 149 150 \begin{figure}[htp] 151 \centering 152 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_HiGain.eps} 153 \vspace{\floatsep} 154 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_HiGain.eps} 155 \vspace{\floatsep} 156 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_LoGain.eps} 157 \vspace{\floatsep} 158 \includegraphics[width=0.4\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_LoGain.eps} 159 \caption{ Charge resolution versus the number of photoelectrons, for spline and 160 digital filter extractors 161 in different window sizes for low (down) and high (upper) gain contribution, with (right) and with out (left) noise.} 162 \label{ChargeRes_DFSpline} 163 \end{figure} 164 165 2 166 3 167 %%% Local Variables:
Note:
See TracChangeset
for help on using the changeset viewer.