- Timestamp:
- 02/19/05 21:19:08 (20 years ago)
- Location:
- trunk/MagicSoft/TDAS-Extractor
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Calibration.tex
r6631 r6635 727 727 in order to count how many times the extractor has failed to reconstruct the correct arrival time. 728 728 \par 729 Figure~\ref{fig:time :5ledsuv} shows the number of outliers for the different time extractors, obtained with729 Figure~\ref{fig:timeunsuit:5ledsuv} shows the number of outliers for the different time extractors, obtained with 730 730 a UV pulse of about 20 photo-electrons. One can see that all time extractors yield an acceptable mis-reconstruction 731 731 rate of about 0.5\%, except for the maximum searching spline yields three times more mis-reconstructions. 732 732 \par 733 If one goes to very low-intensity pulses, as shown in figure~\ref{fig:time :1leduv}, obtained with on average 4 photo-electrons,733 If one goes to very low-intensity pulses, as shown in figure~\ref{fig:timeunsuit:1leduv}, obtained with on average 4 photo-electrons, 734 734 the number of mis-reconstructions increases considerably up to 20\% for some extractors. We interpret this high mis-reconstruction 735 735 rate to the increase possibility to mis-reconstruct a pulse from the night sky background noise instead of the signal pulse from the … … 737 737 in that respect. 738 738 \par 739 The same conclusion seems to hold for the green pulse of about 20 photo-electrons (figure~\ref{fig:time :2ledsgreen})739 The same conclusion seems to hold for the green pulse of about 20 photo-electrons (figure~\ref{fig:timeunsuit:2ledsgreen}) 740 740 where the digital filter over 6 FADC slices seems to 741 741 yield more stable results than the one over 4 FADC slices. The half-maximum searching spline seems to be superior to the maximum-searching 742 742 one. 743 743 \par 744 In figure~\ref{fig:time :23ledsblue}, one can see the number of outliers from an intense calibration pulse of blue light yielding about744 In figure~\ref{fig:timeunsuit:23ledsblue}, one can see the number of outliers from an intense calibration pulse of blue light yielding about 745 745 600 photo-electrons per inner pixel. All extractors seem to be stable, except for the digital filter with weigths over 4 FADC slices. This 746 746 is expected, since the low-gain pulse is wider than 4 FADC slices. … … 757 757 for the outer pixels. Points 758 758 denote the mean of all not-excluded pixels, the error bars their RMS.} 759 \label{fig:time :5ledsuv}759 \label{fig:timeunsuit:5ledsuv} 760 760 \end{figure} 761 761 … … 769 769 for the outer pixels. Points 770 770 denote the mean of all not-excluded pixels, the error bars their RMS.} 771 \label{fig:time :1leduv}771 \label{fig:timeunsuit:1leduv} 772 772 \end{figure} 773 773 … … 780 780 for the outer pixels. Points 781 781 denote the mean of all not-excluded pixels, the error bars their RMS.} 782 \label{fig:time :2ledsgreen}782 \label{fig:timeunsuit:2ledsgreen} 783 783 \end{figure} 784 784 … … 791 791 for the outer pixels. Points 792 792 denote the mean of all not-excluded pixels, the error bars their RMS.} 793 \label{fig:time :23ledsblue}793 \label{fig:timeunsuit:23ledsblue} 794 794 \end{figure} 795 795 … … 803 803 804 804 \begin{enumerate} 805 \item The intrinsic arrival time spread of the photons on the PMT .This time spread806 can be estimated roughly by the intrinsic width $\delta t_{\mathrm{ LED}}$807 of the calibration pulses of about 2\,ns 808 for the faster UV pulses and 3--4\,ns for the green and blue pulses.The resulting time805 \item The intrinsic arrival time spread of the photons on the PMT: This time spread 806 can be estimated roughly by the intrinsic width $\delta t_{\mathrm{IN}}$ of the 807 input light pulse. 808 The resulting time 809 809 resolution is given by: 810 810 \begin{equation} 811 \Delta t \approx \frac{\delta t_{\mathrm{ LED}}}{\sqrt{Q/{\mathrm{phe}}}}811 \Delta t \approx \frac{\delta t_{\mathrm{IN}}}{\sqrt{Q/{\mathrm{phe}}}} 812 812 \end{equation} 813 814 815 For our 816 calibration LEDs this can be up to about 2 ns, for muons it is about a 817 few hundreds of ps and for hadrons a few ns. The error of the mean 818 arrival time of the total pulse is again the arrival time spread of the 819 photons divided by the number of photo electrons. 820 \item The intrinsic transit time spread TTS of the PMT. It can be in the order 821 of a few hundreds of ps per single photo electron. When we reconstruct 822 the mean pulse arrival time the error of the mean is given by the time 823 spread per single photo electron dividid by the square root of number of 824 photo electrons. 825 \item reconstruction error due to noise and error of the numeric fit in 826 case of the digital filter. In case of the digital filter the error for 827 the standard noise level in the MC is about 2.7 ns divided by the signal 828 in photo electrons. 813 The width $\delta t_{\mathrm{LED}}$ of the calibration pulses of about 2\,ns 814 for the faster UV pulses and 3--4\,ns for the green and blue pulses, 815 for muons it is a few hundred ps, for gammas about 1\,ns and for hadrons a few ns. 816 \item The intrinsic transit time spread $\mathrm{\it TTS}$ of the photo-multiplier: 817 It can be of the order of a few hundreds of ps per single photo electron, depending on the 818 wavelength of the incident light. As in the case of the photon arrival time spread, the total 819 time spread scales with the inverse of the square root of the number of photo-electrons: 820 \begin{equation} 821 \Delta t \approx \frac{\delta t_{\mathrm{TTS}}}{\sqrt{Q/{\mathrm{phe}}}} 822 \end{equation} 823 \item The reconstruction error due to the background noise: This contribution is proportional to the 824 signal to square root of background light intensities. 829 825 \end{enumerate} 830 826 831 All this seems to quite agree with the results obtained with the MC 832 TestPulses. As 1) and 2) are proportional to one over the square root of 833 the signal and 3 is proportional to one over the signal, for small 834 pulses the noise determins the resolution, but for larger pulses the 835 intrinsic fluctuations limit the timing resolution. 836 837 When we get a time resolution of about 300 ps for calibration LED pulses 838 we can not distinquish 1) and 2). Thus we have to wait for the exact 839 measurement. 840 841 842 \begin{figure}[htp] 843 \centering 844 \includegraphics[width=0.95\linewidth]{TimeResExtractor-5LedsUV-Colour-12.eps} 827 Additionally to these intrinsic and irreducible contributions to the timing resolutions, the limited precision of the 828 extractors adds an additional time spread. In the following, we show measurements of the time resolutions at different 829 signal intensities in real conditions for the calibration pulses. These set upper limits to the time resolution for cosmics since their 830 intrinsic arrival time spread is smaller. 831 832 Figures~\ref{fig:time:5ledsuv} through~\ref{fig:time:23ledsblue} show the measured time resolutions for very different calibration 833 pulse intensities and colours. One can see that the sliding window resolutions are always worse than the spline and digital filter 834 algorithms. Moreover, the half-maximum position search by the spline is always slightly better than the maximum position search. The 835 digital filter does not show notable differences with respect to the pulse form or the extraction window size, except for the low-gain 836 extraction where the 4 slices seem to yield a better resolution. This is only after excluding about 30\% of the events, as shown in 837 figure~\ref{fig:timeunsuit:23ledsblue}. 838 839 \begin{figure}[htp] 840 \centering 841 \includegraphics[height=0.38\textheight]{TimeResExtractor-5LedsUV-Colour-12.eps} 845 842 \caption{Reconstructed arrival time resolutions from a typical, not saturating calibration pulse 846 843 of colour UV, reconstructed with each of the tested arrival time extractors. … … 853 850 \begin{figure}[htp] 854 851 \centering 855 \includegraphics[ width=0.95\linewidth]{TimeResExtractor-1LedUV-Colour-04.eps}852 \includegraphics[height=0.38\textheight]{TimeResExtractor-1LedUV-Colour-04.eps} 856 853 \caption{Reconstructed arrival time resolutions from the lowest intensity calibration pulse 857 854 of colour UV (carrying a mean number of 4 photo-electrons), … … 865 862 \begin{figure}[htp] 866 863 \centering 867 \includegraphics[ width=0.95\linewidth]{TimeResExtractor-2LedsGreen-Colour-02.eps}864 \includegraphics[height=0.38\textheight]{TimeResExtractor-2LedsGreen-Colour-02.eps} 868 865 \caption{Reconstructed arrival time resolutions from a typical, not saturating calibration pulse 869 866 of colour Green, reconstructed with each of the tested arrival time extractors. … … 876 873 \begin{figure}[htp] 877 874 \centering 878 \includegraphics[ width=0.95\linewidth]{TimeResExtractor-23LedsBlue-Colour-00.eps}875 \includegraphics[height=0.38\textheight]{TimeResExtractor-23LedsBlue-Colour-00.eps} 879 876 \caption{Reconstructed arrival time resolutions from the highest intensity calibration pulse 880 877 of colour blue, reconstructed with each of the tested arrival time extractors. … … 884 881 \label{fig:time:23ledsblue} 885 882 \end{figure} 883 884 \clearpage 886 885 887 886 … … 904 903 \end{figure} 905 904 905 \subsubsection{An Upper Limit for the Average Intrinsic Time Spread of the Photo-multipliers} 906 907 906 908 907 909 \begin{figure}[htp] -
trunk/MagicSoft/TDAS-Extractor/MonteCarlo.tex
r6585 r6635 5 5 \begin{figure}[htp]%%[t!] 6 6 \centering 7 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps}8 \vspace{\floatsep} 9 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps}10 \vspace{\floatsep} 11 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps}12 \vspace{\floatsep} 13 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}7 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps} 8 \vspace{\floatsep} 9 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps} 10 \vspace{\floatsep} 11 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps} 12 \vspace{\floatsep} 13 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps} 14 14 \caption[Charge per Number of photo-electrons Fixed Windows]{Extracted charge per photoelectron versus number of photoelectrons, 15 15 for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the … … 20 20 \begin{figure}[htp] 21 21 \centering 22 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps}23 \vspace{\floatsep} 24 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps}25 \vspace{\floatsep} 26 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps}27 \vspace{\floatsep} 28 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps}22 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps} 23 \vspace{\floatsep} 24 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps} 25 \vspace{\floatsep} 26 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps} 27 \vspace{\floatsep} 28 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps} 29 29 \caption[Charge per Number of photo-electrons Sliding Windows]{Extracted charge per photoelectron versus number of photoelectrons, 30 30 for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the … … 35 35 \begin{figure}[htp] 36 36 \centering 37 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps}38 \vspace{\floatsep} 39 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps}40 \vspace{\floatsep} 41 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps}42 \vspace{\floatsep} 43 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps}37 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps} 38 \vspace{\floatsep} 39 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps} 40 \vspace{\floatsep} 41 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps} 42 \vspace{\floatsep} 43 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps} 44 44 \caption[Charge per Number of photo-electrons Spline and Digital Filter]{Extracted charge per photoelectron versus number of photoelectrons, 45 45 for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones show the … … 50 50 \begin{figure}[htp]%%[t!] 51 51 \centering 52 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps}53 \vspace{\floatsep} 54 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps}55 \vspace{\floatsep} 56 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps}57 \vspace{\floatsep} 58 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps}59 \includegraphics[width=0.49\linewidth]{T DAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}52 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps} 53 \vspace{\floatsep} 54 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps} 55 \vspace{\floatsep} 56 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps} 57 \vspace{\floatsep} 58 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps} 59 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps} 60 60 \caption[Bias Fixed Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons) 61 61 versus number of photoelectrons, … … 67 67 \begin{figure}[htp] 68 68 \centering 69 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps}70 \vspace{\floatsep} 71 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps}72 \vspace{\floatsep} 73 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps}74 \vspace{\floatsep} 75 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps}69 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps} 70 \vspace{\floatsep} 71 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps} 72 \vspace{\floatsep} 73 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps} 74 \vspace{\floatsep} 75 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps} 76 76 \caption[Bias Sliding Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons) 77 77 versus number of photoelectrons, … … 83 83 \begin{figure}[htp] 84 84 \centering 85 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps}86 \vspace{\floatsep} 87 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps}88 \vspace{\floatsep} 89 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps}90 \vspace{\floatsep} 91 \includegraphics[width=0.49\linewidth]{T DAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps}85 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps} 86 \vspace{\floatsep} 87 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps} 88 \vspace{\floatsep} 89 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps} 90 \vspace{\floatsep} 91 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps} 92 92 \caption[Bias Spline and Digital Filter]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons) 93 93 versus number of photoelectrons, … … 99 99 \begin{figure}[htp] 100 100 \centering 101 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_FixW_NoNoise_HiGain.eps}102 \vspace{\floatsep} 103 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_FixW_WithNoise_HiGain.eps}104 \vspace{\floatsep} 105 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_FixW_NoNoise_LoGain.eps}106 \vspace{\floatsep} 107 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_FixW_WithNoise_LoGain.eps}101 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_HiGain.eps} 102 \vspace{\floatsep} 103 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_HiGain.eps} 104 \vspace{\floatsep} 105 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_LoGain.eps} 106 \vspace{\floatsep} 107 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_LoGain.eps} 108 108 \caption[Charge Resolution Fixed Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons, 109 109 for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the … … 114 114 \begin{figure}[htp] 115 115 \centering 116 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_SlidW_NoNoise_HiGain.eps}117 \vspace{\floatsep} 118 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_SlidW_WithNoise_HiGain.eps}119 \vspace{\floatsep} 120 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_SlidW_NoNoise_LoGain.eps}121 \vspace{\floatsep} 122 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_SlidW_WithNoise_LoGain.eps}116 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_HiGain.eps} 117 \vspace{\floatsep} 118 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_HiGain.eps} 119 \vspace{\floatsep} 120 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_LoGain.eps} 121 \vspace{\floatsep} 122 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_LoGain.eps} 123 123 \caption[Charge Resolution Sliding Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons, 124 124 for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the … … 129 129 \begin{figure}[htp] 130 130 \centering 131 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_DFSpline_NoNoise_HiGain.eps}132 \vspace{\floatsep} 133 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_DFSpline_WithNoise_HiGain.eps}134 \vspace{\floatsep} 135 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_DFSpline_NoNoise_LoGain.eps}136 \vspace{\floatsep} 137 \includegraphics[width=0.49\linewidth]{T DAS_ChargeRes_DFSpline_WithNoise_LoGain.eps}131 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_HiGain.eps} 132 \vspace{\floatsep} 133 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_HiGain.eps} 134 \vspace{\floatsep} 135 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_LoGain.eps} 136 \vspace{\floatsep} 137 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_LoGain.eps} 138 138 \caption[Charge Resolution Spline and Digital Filter]{The measured resolution 139 139 (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons, … … 177 177 \begin{figure}[htp]%%[t!] 178 178 \centering 179 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_SlidW_NoNoise_HiGain.eps}180 \vspace{\floatsep} 181 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_SlidW_WithNoise_HiGain.eps}182 \vspace{\floatsep} 183 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_SlidW_NoNoise_LoGain.eps}184 \vspace{\floatsep} 185 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_SlidW_WithNoise_LoGain.eps}179 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_HiGain.eps} 180 \vspace{\floatsep} 181 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_HiGain.eps} 182 \vspace{\floatsep} 183 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_LoGain.eps} 184 \vspace{\floatsep} 185 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_LoGain.eps} 186 186 \caption[Time Resolution Sliding Windows]{The measured time resolution (RMS of extracted time minus simulated time) 187 187 versus number of photoelectrons, … … 193 193 \begin{figure}[htp] 194 194 \centering 195 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_DFSpline_NoNoise_HiGain.eps}196 \vspace{\floatsep} 197 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_DFSpline_WithNoise_HiGain.eps}198 \vspace{\floatsep} 199 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_DFSpline_NoNoise_LoGain.eps}200 \vspace{\floatsep} 201 \includegraphics[width=0.49\linewidth]{T DAS_TimeRes_DFSpline_WithNoise_LoGain.eps}195 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_HiGain.eps} 196 \vspace{\floatsep} 197 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_HiGain.eps} 198 \vspace{\floatsep} 199 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_LoGain.eps} 200 \vspace{\floatsep} 201 \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_LoGain.eps} 202 202 \caption[Time Resolution Spline and Digital Filter]{The measured time resolution (RMS of extracted time minus simulated time) 203 203 versus number of photoelectrons,
Note:
See TracChangeset
for help on using the changeset viewer.