Ignore:
Timestamp:
02/20/05 18:41:58 (20 years ago)
Author:
gaug
Message:
*** empty log message ***
Location:
trunk/MagicSoft/TDAS-Extractor
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Calibration.tex

    r6635 r6640  
    821821\Delta t \approx \frac{\delta t_{\mathrm{TTS}}}{\sqrt{Q/{\mathrm{phe}}}}
    822822\end{equation}
    823 \item The reconstruction error due to the background noise: This contribution is proportional to the
    824 signal to square root of background light intensities.
     823\item The reconstruction error due to the background noise and limited extractor resolution:
     824This contribution is inversely proportional to the signal to square root of background light intensities.
     825\begin{equation}
     826\Delta t \approx \frac{\delta t_{\mathrm{rec}} \cdot R/\mathrm{phe}}{Q/{\mathrm{phe}}}
     827\end{equation}
     828where $R$ is the resolution defined in equation~\ref{eq:def:r}.
     829\item A constant offset due to the residual FADC clock jitter~\cite{florian}
     830\begin{equation}
     831\Delta t \approx \delta t_0
     832\end{equation}
    825833\end{enumerate}
    826834
    827 Additionally to these intrinsic and irreducible contributions to the timing resolutions, the limited precision of the
    828  extractors adds an additional time spread. In the following, we show measurements of the time resolutions at different
     835In the following, we show measurements of the time resolutions at different
    829836signal intensities in real conditions for the calibration pulses. These set upper limits to the time resolution for cosmics since their
    830837intrinsic arrival time spread is smaller.
     
    884891\clearpage
    885892
    886 
    887 \begin{figure}[htp]
    888 \centering
    889 \includegraphics[width=0.47\linewidth]{TimeResVsCharge-Area-21.eps}
    890 \includegraphics[width=0.47\linewidth]{TimeResVsCharge-Area-24.eps}
    891 \vspace{\floatsep}
    892 \includegraphics[width=0.47\linewidth]{TimeResVsCharge-Area-30.eps}
    893 \includegraphics[width=0.47\linewidth]{TimeResVsCharge-Area-31.eps}
     893The following figure~\ref{fig:time:dep} shows the time resolution for various calibration runs taken with different colours
     894and light intensities as a funcion of the mean number of photo-electrons --
     895reconstructed with the F-Factor method -- for four different time extractors. The dependencies have been fit to the following
     896empirical relation:
     897
     898\begin{equation}
     899\Delta T = \sqrt{\frac{A^2}{<Q>/{\mathrm{phe}}} + \frac{B^2}{<Q>^2/{\mathrm{phe^2}}} + C^2} .
     900\label{eq:time:fit}
     901\end{equation}
     902
     903The fit results are summarized in table~\ref{tab:time:fitresults}.
     904
     905\begin{table}[htp]
     906\scriptsize{%
     907\centering
     908\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
     909\hline
     910\hline
     911\multicolumn{10}{|c|}{\large Time Fit Results} \rule{0mm}{6mm} \rule[-2mm]{0mm}{6mm} \hspace{-3mm}\\
     912\hline
     913\hline
     914\multicolumn{2}{|c|}{} & \multicolumn{4}{|c|}{\normalsize Inner Pixels} & \multicolumn{4}{|c|}{\normalsize Outer Pixels} \rule{0mm}{6mm} \rule[-2mm]{0mm}{4mm} \hspace{-3mm}\\
     915\hline
     916{\normalsize Nr.} & {\normalsize  Name } & {\normalsize  A}  & {\normalsize B } & {\normalsize C }& {\normalsize  $\chi^2$/NDF }
     917& {\normalsize  A } &{\normalsize  B} & {\normalsize  C} &{\normalsize  $\chi^2$/NDF} \rule{0mm}{6mm} \rule[-2mm]{0mm}{4mm} \hspace{-3mm} \\
     918\hline
     91921  & Sliding Window (8,8)   & 3.5$\pm$0.4 & 29$\pm$1 & 0.24$\pm$0.05 & 10.2 &6.0$\pm$0.7 & 52$\pm$4 & 0.23$\pm$0.04 & 4.3  \\
     92025  & Spline Half Max.       & 1.9$\pm$0.2 & 3.8$\pm$1.0 & 0.15$\pm$0.02 & 1.6 &2.6$\pm$0.2 &8.3$\pm$1.9 & 0.15$\pm$0.01 & 2.3  \\
     92132  & Digital Filter (6 sl.) & 1.7$\pm$0.2 & 5.7$\pm$0.8 & 0.21$\pm$0.02 & 5.0 &2.3$\pm$0.3 &13 $\pm$2   & 0.20$\pm$0.01 & 4.0  \\
     92233  & Digital Filter (4 sl.) & 1.7$\pm$0.1 & 4.6$\pm$0.7 & 0.21$\pm$0.02 & 6.2 &2.3$\pm$0.2 &11 $\pm$2   & 0.20$\pm$0.01 & 5.3  \\
     923\hline
     924\hline
     925\end{tabular}
     926\caption{The fit results obtained from the fit of equation~\ref{eq:time:fit} to the time resolutions obtained for various
     927intensities and colours. The fit probabilities are very small mainly because of the different intrinsic arrival time spreads of
     928the photon pulses from different colours. }
     929\label{tab:time:fitresults}.
     930}
     931\end{table}
     932
     933The low fit probabilities are partly due to the systematic differences in the pulse forms in intrinsic arrival time spreads between
     934pulses of different LED colours. Nevertheless, we had to include all colours in the fit to cover the full dynamic range. In general,
     935one can see that the time resolutions for the UV pulses are systematically better than for the other colours which we attribute to the fact
     936the these pulses have a smaller intrinsic pulse width -- which is very close to pulses from cosmics. Moreover, there are clear differences
     937visible between different time extractors, especially the sliding window extractor yields poor resolutions. The other three extractors are
     938compatible within the errors, with the half-maximum of the spline being slightly better.
     939
     940\par
     941
     942To summarize, we find that we can obtain a time resolution of better than 1\,ns for all pulses above a threshold of 5\ photo-electrons.
     943This corresponds roughly to the image cleaning threshold in case of using the best signal extractor. At the largest signals, we can
     944reach a time resolution of as good as 200\,ps.
     945\par
     946The expected time resolution for inner pixels and cosmics pulses can thus be conservatively estimated to be:
     947
     948\begin{equation}
     949\Delta T_{\mathrm{cosmics}} \approx \sqrt{\frac{4\,\mathrm{ns}^2}{<Q>/{\mathrm{phe}}} + \frac{20\,\mathrm{ns}^2}{<Q>^2/{\mathrm{phe^2}}} + 0.04\,\mathrm{ns}^2} .
     950\label{eq:time:fitprediction}
     951\end{equation}
     952
     953\begin{landscape}
     954\begin{figure}[htp]
     955\centering
     956\includegraphics[width=0.24\linewidth]{TimeResFitted-21.eps}
     957\includegraphics[width=0.24\linewidth]{TimeResFitted-25.eps}
     958\includegraphics[width=0.24\linewidth]{TimeResFitted-32.eps}
     959\includegraphics[width=0.24\linewidth]{TimeResFitted-33.eps}
    894960\caption{Reconstructed mean arrival time resolutions as a function of the extracted mean number of
    895961photo-electrons for the weighted sliding window with a window size of 8 slices (extractor \#21, top left),
    896 the half-maximum searching spline (extractor \#24, top right),
    897 the digital filter with UV calibration-pulse weights over 6 slices (extractor \#30, bottom left)
    898 and the digital filter with UV calibration-pulse weights over 4 slices (extractor \#31, bottom rigth).
     962the half-maximum searching spline (extractor~\#25, top right),
     963the digital filter with correct pulse weights over 6 slices (extractor~\#30 and~\#32, bottom left)
     964and the digital filter with UV calibration-pulse weights over 4 slices (extractor~\#31 and~\#33, bottom rigth).
    899965Error bars denote the spread (RMS) of time resolutions of the investigated channels.
    900966The marker colours show the applied
     
    902968\label{fig:time:dep}
    903969\end{figure}
    904 
    905 \subsubsection{An Upper Limit for the Average Intrinsic Time Spread of the Photo-multipliers}
    906 
    907 
    908 
    909 \begin{figure}[htp]
    910 \centering
    911 \includegraphics[width=0.32\linewidth]{TimeResVsSqrtPhe-Area-24.eps}
    912 \includegraphics[width=0.32\linewidth]{TimeResVsSqrtPhe-Area-30.eps}
    913 \includegraphics[width=0.32\linewidth]{TimeResVsSqrtPhe-Area-31.eps}
    914 \caption{Reconstructed arrival time resolutions as a function of the square root of the
    915 extimated number of photo-electrons for the half-maximum searching spline (extractor \#24, left) a
    916 and the digital filter with the calibration pulse weigths fitted to UV pulses over 6 FADC slices (extractor \#30, center)
    917 and the  digital filter with the calibration pulse weigths fitted to UV pulses over 4 FADC slices (extractor \#31, right).
    918 The time resolutions have been fitted from
    919 The marker colours show the applied
    920 pulser colour, except for the last (green) point where all three colours were used.}
    921 \label{fig:time:fit2430}
    922 \end{figure}
     970\end{landscape}
     971
     972The above resolution seems to be already limited by the intrinsic resolution of the photo-multipliers and the staggering of the
     973mirrors in case of the MAGIC-I telescope.
     974
     975%\begin{figure}[htp]
     976%\centering
     977%\includegraphics[width=0.32\linewidth]{TimeResVsSqrtPhe-Area-24.eps}
     978%\includegraphics[width=0.32\linewidth]{TimeResVsSqrtPhe-Area-30.eps}
     979%\includegraphics[width=0.32\linewidth]{TimeResVsSqrtPhe-Area-31.eps}
     980%\caption{Reconstructed arrival time resolutions as a function of the square root of the
     981%extimated number of photo-electrons for the half-maximum searching spline (extractor \#24, left) a
     982%and the digital filter with the calibration pulse weigths fitted to UV pulses over 6 FADC slices (extractor \#30, center)
     983%and the  digital filter with the calibration pulse weigths fitted to UV pulses over 4 FADC slices (extractor \#31, right).
     984%The time resolutions have been fitted from
     985%The marker colours show the applied
     986%pulser colour, except for the last (green) point where all three colours were used.}
     987%\label{fig:time:fit2430}
     988%\end{figure}
    923989
    924990
  • trunk/MagicSoft/TDAS-Extractor/Criteria.tex

    r6621 r6640  
    3838\end{equation}
    3939
    40 has the mean $B$ and the Variance $R$ defined as:
     40has the mean $B$ and the resolution $R$ defined as:
    4141
    4242\begin{eqnarray}
    4343   B   \ \ \ \  = \ \ \ \ \ \ <X> \ \ \ \ \  &=& \ \ <\widehat{S}> \ -\ S\\
    44    R^2 \ \ \ \  = \ <(X-B)^2> &=& \ Var[\widehat{S}]\\
     44   R^2 \ \ \ \  = \ <(X-B)^2> &=& \ Var[\widehat{S}] \label{eq:def:r}\\
    4545   MSE \      = \ \ \ \ \ <X^2> \ \ \ \  &=& \ Var[\widehat{S}] +\ B^2
    4646\end{eqnarray}
  • trunk/MagicSoft/TDAS-Extractor/MAGIC_signal_reco.bbl

    r6562 r6640  
    8484\newblock http://wwwmagic.mppmu.mpg.de/publications/theses/David\_thesis.ps.gz.
    8585
     86\bibitem{florian}
     87F.~Goebel,
     88\newblock private communication.
     89
    8690\end{thebibliography}
Note: See TracChangeset for help on using the changeset viewer.