Changeset 6736
- Timestamp:
- 03/04/05 08:49:41 (20 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/GC-Proposal/GC.tex
r6735 r6736 190 190 191 191 192 where $\langle \sigma v \rangle$ is the thermally averaged cross section, $m_{\chi}$ the mass and $\rho_{\chi}$ the spatial density distribution of the hypothetical dark matter particles. The flux prediction depends on the choose of SUSY parameters and the spatial distribution of the dark matter. The spectra of the produced gamma radiation has a very characteristic feature a sharp cut-off at the mass of the dark matter particle. Also the flux should be absolutely stable in time.192 where $\langle \sigma v \rangle$ is the thermally averaged cross section, $m_{\chi}$ the mass and $\rho_{\chi}$ the spatial density distribution of the hypothetical dark matter particles. $N_{\gamma}(E_{\gamma}>E_{\mathrm{thresh}})$ is the gamma yield above the threshold energy per annihilation. The flux prediction depends on the choose of SUSY parameters and the spatial distribution of the dark matter. The spectra of the produced gamma radiation has a very characteristic feature a sharp cut-off at the mass of the dark matter particle. Also the flux should be absolutely stable in time. 193 193 194 194 Numerical simulations of cold dark matter \cite{NFW1997,Stoehr2002,Hayashi2004,Moore1998} predict universal DM halo profiles with density enhancement in the center of the dark halos. In the very center the dark matter density can even more enhanced through an adiabatic compression due to the baryons \cite{Prada2004} present. All dark matter distributions that predict observable fluxes are cusped yielding an approximately point-like source. … … 196 196 Using fits of these dark matter profiles to the rotation data of the milky way predictions for the density distribution of the dark matter can be made \cite{Fornego2004,Evans2004}. Assuming parameters for the SUSY models determine the neutralino mass, the thermally averaged annihilation cross section and the gamma yield. Combining both models about the dark matter distribution and SUSY predictions for the gamma flux from SUSY particle dark matter annihilation are derived. 197 197 198 Figure \ref{fig:exclusion_lmits} shows exclusion limits taking the sensitivity of MAGIC from MC simulations into account . Due to its relative vicinity the Galactic Center yield the largest expected flux from particle dark matter annihilation. Nevertheless this flux is more than one order of magnitude below the current MAGIC sensitivity. Also the observed flux from the HESS experiment way above the theoretical expectation.198 Figure \ref{fig:exclusion_lmits} shows exclusion limits taking the sensitivity of MAGIC from MC simulations into account and predictions from typical allowed SUSY modells in the plane $N_{\gamma}(E_{\gamma}>E_{\mathrm{thresh}})\langle \sigma v \rangle$ vs $m_{\chi}$. Due to its relative vicinity the Galactic Center yield the largest expected flux from particle dark matter annihilation. Nevertheless this flux is more than one order of magnitude below the current MAGIC sensitivity. Also the observed flux from the HESS experiment way above the theoretical expectation. 199 199 200 200 … … 203 203 \includegraphics[totalheight=6cm]{Dark_exclusion_limits.eps} 204 204 \end{center} 205 \caption[DM exclusion limits.]{Exclusion limits for different possible sources of dark matter annihilation radiation. The galactic center is expected to give the largest flux from all sources. Due to the possible flux con} \label{fig:exclusion_lmits}205 \caption[DM exclusion limits.]{Exclusion limits for different possible sources of dark matter annihilation radiation. The galactic center is expected to give the largest flux from all sources. The observed flux by the HESS experiment is within the reach of MAGIC for energies above about 700 GeV. Nevertheless it is more than one order of magnitude above the typical model predictions. -- figure to be updated --} \label{fig:exclusion_lmits} 206 206 \end{figure} 207 207
Note:
See TracChangeset
for help on using the changeset viewer.