- Timestamp:
- 03/08/05 17:15:47 (20 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Pedestal.tex
r6748 r6793 93 93 94 94 95 \begin{figure}[htp]96 \centering97 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RelMean.eps}98 \vspace{\floatsep}99 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RelMean.eps}100 \vspace{\floatsep}101 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RelMean.eps}102 \caption{MExtractTimeAndChargeSpline with amplitude extraction:103 Difference in mean pedestal (per FADC slice) between extraction algorithm104 applied on a fixed window of 1 FADC slice (``extractor random'') and a simple addition of105 2 fixed FADC slices (``fundamental''). On the left, a run with closed camera has been taken, in the center106 an opened camera observing an extra-galactic star field and on the right, an open camera being107 illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one108 pixel.}109 \label{fig:amp:relmean}110 \end{figure}111 112 \begin{figure}[htp]113 \centering114 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RelMean.eps}115 \vspace{\floatsep}116 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RelMean.eps}117 \vspace{\floatsep}118 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RelMean.eps}119 \caption{MExtractTimeAndChargeSpline with integral over 2 slices:120 Difference in mean pedestal (per FADC slice) between extraction algorithm121 applied on a fixed window of 2 FADC slices (``extractor random'') and a simple addition of122 2 FADC fixed slices (``fundamental''). On the left, a run with closed camera has been taken, in the center123 an opened camera observing an extra-galactic star field and on the right, an open camera being124 illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one125 pixel.}126 \label{fig:int:relmean}127 \end{figure}128 129 \begin{figure}[htp]130 \centering131 \vspace{\floatsep}132 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RelMean.eps}133 \vspace{\floatsep}134 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RelMean.eps}135 \vspace{\floatsep}136 \includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RelMean.eps}137 \caption{MExtractTimeAndChargeDigitalFilter:138 Difference in mean pedestal (per FADC slice) between extraction algorithm139 applied on a fixed window of 6 FADC slices and time-randomized weights (``extractor random'')140 and a simple addition of141 6 FADC fixed slices (``fundamental''). On the left, a run with closed camera has been taken, in the center142 an opened camera observing an extra-galactic star field and on the right, an open camera being143 illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one144 pixel.}145 \label{fig:df:relmean}146 \end{figure}95 %\begin{figure}[htp] 96 %\centering 97 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RelMean.eps} 98 %\vspace{\floatsep} 99 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RelMean.eps} 100 %\vspace{\floatsep} 101 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RelMean.eps} 102 %\caption{MExtractTimeAndChargeSpline with amplitude extraction: 103 %Difference in mean pedestal (per FADC slice) between extraction algorithm 104 %applied on a fixed window of 1 FADC slice (``extractor random'') and a simple addition of 105 %2 fixed FADC slices (``fundamental''). On the left, a run with closed camera has been taken, in the center 106 % an opened camera observing an extra-galactic star field and on the right, an open camera being 107 %illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one 108 %pixel.} 109 %\label{fig:amp:relmean} 110 %\end{figure} 111 112 %\begin{figure}[htp] 113 %\centering 114 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RelMean.eps} 115 %\vspace{\floatsep} 116 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RelMean.eps} 117 %\vspace{\floatsep} 118 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RelMean.eps} 119 %\caption{MExtractTimeAndChargeSpline with integral over 2 slices: 120 %Difference in mean pedestal (per FADC slice) between extraction algorithm 121 %applied on a fixed window of 2 FADC slices (``extractor random'') and a simple addition of 122 %2 FADC fixed slices (``fundamental''). On the left, a run with closed camera has been taken, in the center 123 % an opened camera observing an extra-galactic star field and on the right, an open camera being 124 %illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one 125 %pixel.} 126 %\label{fig:int:relmean} 127 %\end{figure} 128 129 %\begin{figure}[htp] 130 %\centering 131 %\vspace{\floatsep} 132 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RelMean.eps} 133 %\vspace{\floatsep} 134 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RelMean.eps} 135 %\vspace{\floatsep} 136 %\includegraphics[width=0.3\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RelMean.eps} 137 %\caption{MExtractTimeAndChargeDigitalFilter: 138 %Difference in mean pedestal (per FADC slice) between extraction algorithm 139 %applied on a fixed window of 6 FADC slices and time-randomized weights (``extractor random'') 140 %and a simple addition of 141 %6 FADC fixed slices (``fundamental''). On the left, a run with closed camera has been taken, in the center 142 % an opened camera observing an extra-galactic star field and on the right, an open camera being 143 %illuminated by the continuous light of the calibration (level: 100). Every entry corresponds to one 144 %pixel.} 145 %\label{fig:df:relmean} 146 %\end{figure} 147 147 148 148 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% … … 177 177 \par 178 178 179 The following figures~\ref{fig:amp:relmean} through~\ref{fig:df:relrms} show results 180 obtained with the second method for three background intensities: 181 182 \begin{enumerate} 183 \item Closed camera and no (Poissonian) fluctuation due to photons from the night sky background 184 \item The camera pointing to an extra-galactic region with stars in the field of view 185 \item The camera illuminated by a continuous light source of intensity 100. 186 \end{enumerate} 187 188 Figures~\ref{fig:amp:relmean} through~\ref{fig:df:relmean} 189 show the calculated biases obtained with this method for all pixels in the camera 190 and for the different levels of (night-sky) background applied to 1000 pedestal events. 191 One can see that the bias vanishes to an accuracy of better than 2\% of a photo-electron 179 %The following figures~\ref{fig:amp:relmean} through~\ref{fig:df:relrms} show results 180 %obtained with the second method for three background intensities: 181 182 %\begin{enumerate} 183 %\item Closed camera and no (Poissonian) fluctuation due to photons from the night sky background 184 %\item The camera pointing to an extra-galactic region with stars in the field of view 185 %\item The camera illuminated by a continuous light source of intensity 100. 186 %\end{enumerate} 187 188 The calculated biases obtained with this method for all pixels in the camera 189 and for the different levels of (night-sky) background applied vanish 190 to an accuracy of better than 2\% of a photo-electron 192 191 for the extractors which are used in this TDAS. 192 \par 193 Table~\ref{tab::ped:fw} shows the resolutions $R$ obtained 194 by applying an extractor to a fixed extraction window, 195 for the inner and outer pixels, respectively, for four different camera illumination conditions: 196 Closed camera (run \#38993), star-field of an extra-galactic source observation (run~\#38995), 197 star-field of the Crab-Nebula observation (run~\#39258) and observation with the almost fully 198 illuminated moon at an angular distance of about~60$^\circ$ from the telescope pointing position 199 (run~\#46471). In the first three cases, the RMS of the values has been calculated while in the 200 fourth case, the high-end side of the signal distributions have been fitted to a Gaussian. 201 \par 202 The entries belonging to the rows denoted as ``Slid. Win.'' are by construction identical to those 203 obtained by simply summing up the FADC slices (the ``fundamental Pedestal RMS''). 204 Note that the digital filter yields much smaller values of $R$ than the ``sliding windows'' of 205 a same window size. This characteristic shows the 206 ``filter''--capacity of that algorithm. It ``filters out'' up to 50\% of the night sky 207 background photo-electrons. 208 \par 209 One can see that the ratio between the pedestal RMS of outer and inner pixels is around a factor~3 210 for the closed camera and then 1.6--1.9 for the other conditions. 211 212 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 213 193 214 194 215 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 195 216 196 \begin{figure}[htp] 197 \centering 198 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RMSDiff.eps} 199 \vspace{\floatsep} 200 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RMSDiff.eps} 201 \vspace{\floatsep} 202 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RMSDiff.eps} 203 \caption{MExtractTimeAndChargeSpline with amplitude: 204 Difference in RMS (per FADC slice) between extraction algorithm 205 applied on a fixed window and the corresponding pedestal RMS. 206 Closed camera (left), open camera observing extra-galactic star field (right) and 207 camera being illuminated by the continuous light (bottom). 208 Every entry corresponds to one pixel.} 209 \label{fig:amp:relrms} 210 \end{figure} 211 212 213 \begin{figure}[htp] 214 \centering 215 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RMSDiff.eps} 216 \vspace{\floatsep} 217 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RMSDiff.eps} 218 \vspace{\floatsep} 219 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RMSDiff.eps} 220 \caption{MExtractTimeAndChargeSpline with integral over 2 slices: 221 Difference in RMS (per FADC slice) between extraction algorithm 222 applied on a fixed window and the corresponding pedestal RMS. 223 Closed camera (left), open camera observing extra-galactic star field (right) and 224 camera being illuminated by the continuous light (bottom). 225 Every entry corresponds to one 226 pixel.} 227 \label{fig:int:relrms} 228 \end{figure} 229 230 231 \begin{figure}[htp] 232 \centering 233 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RMSDiff.eps} 234 \vspace{\floatsep} 235 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RMSDiff.eps} 236 \vspace{\floatsep} 237 \includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RMSDiff.eps} 238 \caption{MExtractTimeAndChargeDigitalFilter: 239 Difference in RMS (per FADC slice) between extraction algorithm 240 applied on a fixed window and the corresponding pedestal RMS. 241 Closed camera (left), open camera observing extra-galactic star field (right) and 242 camera being illuminated by the continuous light (bottom). 243 Every entry corresponds to one pixel.} 244 \label{fig:df:relrms} 245 \end{figure} 246 217 %\begin{figure}[htp] 218 %\centering 219 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RMSDiff.eps} 220 %\vspace{\floatsep} 221 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RMSDiff.eps} 222 %\vspace{\floatsep} 223 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RMSDiff.eps} 224 %\caption{MExtractTimeAndChargeSpline with amplitude: 225 %Difference in RMS (per FADC slice) between extraction algorithm 226 %applied on a fixed window and the corresponding pedestal RMS. 227 %Closed camera (left), open camera observing extra-galactic star field (right) and 228 %camera being illuminated by the continuous light (bottom). 229 %Every entry corresponds to one pixel.} 230 %\label{fig:amp:relrms} 231 %\end{figure} 232 233 234 %\begin{figure}[htp] 235 %\centering 236 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38993_RMSDiff.eps} 237 %\vspace{\floatsep} 238 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38995_RMSDiff.eps} 239 %\vspace{\floatsep} 240 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeSpline_Rise-and-Fall-Time_0.5_1.5_Range_01_10_02_12_Run_38996_RMSDiff.eps} 241 %\caption{MExtractTimeAndChargeSpline with integral over 2 slices: 242 %Difference in RMS (per FADC slice) between extraction algorithm 243 %applied on a fixed window and the corresponding pedestal RMS. 244 %Closed camera (left), open camera observing extra-galactic star field (right) and 245 %camera being illuminated by the continuous light (bottom). 246 %Every entry corresponds to one 247 %pixel.} 248 %\label{fig:int:relrms} 249 %\end{figure} 250 251 252 %\begin{figure}[htp] 253 %\centering 254 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RMSDiff.eps} 255 %\vspace{\floatsep} 256 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RMSDiff.eps} 257 %\vspace{\floatsep} 258 %\includegraphics[width=0.47\linewidth]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RMSDiff.eps} 259 %\caption{MExtractTimeAndChargeDigitalFilter: 260 %Difference in RMS (per FADC slice) between extraction algorithm 261 %applied on a fixed window and the corresponding pedestal RMS. 262 %Closed camera (left), open camera observing extra-galactic star field (right) and 263 %camera being illuminated by the continuous light (bottom). 264 %Every entry corresponds to one pixel.} 265 %\label{fig:df:relrms} 266 %\end{figure} 267 268 %\begin{landscape} 269 %\rotatebox{90}{% 270 \begin{table}[htp] 271 \vspace{3cm} 272 \small{% 273 \centering 274 \begin{tabular}{|c|c||c|c||c|c||c|c||c|c|} 275 \hline 276 \hline 277 \multicolumn{10}{|c|}{Resolution for $S=0$ and fixed window (units in $N_{\mathrm{phe}}$) \rule{0mm}{6mm} \rule[-2mm]{0mm}{6mm} \hspace{-3mm}} \\ 278 \hline 279 \hline 280 & & \multicolumn{2}{|c|}{Closed camera} & \multicolumn{2}{|c|}{Extra-gal. NSB} & \multicolumn{2}{|c|}{Galactic NSB} & \multicolumn{2}{|c|}{Moon} \\ 281 \hline 282 \hline 283 Nr. & Name & $R$ & $R$ & $R$ & $R$ & $R$ & $R$ & $R$ & $R$ \\ 284 & & inner & outer & inner & outer & inner & outer & inner & outer \\ 285 \hline 286 17 & Slid. Win. 2 & 0.3 & 0.9 & 1.2 & 2.0 & 1.5 & 2.4 & 3.0 & 5.3 \\ 287 18 & Slid. Win. 4 & 0.4 & 1.2 & 1.6 & 2.7 & 2.0 & 3.3 & 3.9 & 7.3 \\ 288 20 & Slid. Win. 6 & 0.5 & 1.6 & 2.0 & 3.5 & 2.4 & 4.3 & 4.7 & 9.0 \\ 289 21 & Slid. Win. 8 & 0.6 & 2.0 & 2.3 & 4.1 & 2.9 & 5.0 & 5.3 & 10.1 \\ 290 \hline 291 23 & Spline Amp. & 0.3 & 0.8 & 1.0 & 1.8 & 1.2 & 2.2 & 2.5 & 4.9 \\ 292 24 & Spline Int. 1 & 0.3 & 0.7 & 0.9 & 1.6 & 1.1 & 1.9 & 2.5 & 4.6 \\ 293 25 & Spline Int. 2 & 0.3 & 0.9 & 1.2 & 2.0 & 1.5 & 2.4 & 3.0 & 5.3 \\ 294 26 & Spline Int. 4 & 0.4 & 1.2 & 1.6 & 2.8 & 1.9 & 3.4 & 3.6 & 7.1 \\ 295 27 & Spline Int. 6 & 0.5 & 1.6 & 1.9 & 3.6 & 2.4 & 4.2 & 4.3 & 8.7 \\ 296 \hline 297 28 & Dig. Filt. 6 & 0.3 & 0.8 & 1.0 & 1.6 & 1.2 & 1.9 & 2.8 & 4.3 \\ 298 29 & Dig. Filt. 4 & 0.3 & 0.7 & 0.9 & 1.6 & 1.1 & 1.9 & 2.5 & 4.3 \\ 299 \hline 300 \hline 301 \end{tabular} 302 \vspace{1cm} 303 \caption{The mean resolution $R$ for different extractors applied to a fixed window of pedestal events. 304 Four different conditions of night sky background are shown: 305 Closed camera, extra-galactic star-field, galactic star-field and almost full moon at 60$^\circ$ angular 306 distance from the pointing position. With the first three conditions, a simple RMS of the extracted 307 signals has been calculated while in the fourth case, a Gauss fit to the high part of the distribution 308 has been made. 309 The obtained values can typically vary by up to 10\% for different channels of the camera readout.} 310 \label{tab:ped:fw} 311 } 312 \end{table} 313 %} 314 %\end{landscape} 247 315 248 316 249 317 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 250 318 251 Figures~\ref{fig:amp:relrms} through~\ref{fig:df:relrms} show the252 differences in $R$ between the RMS of simply summing up the FADC slices over the extraction window253 (in MARS called: ``Fundamental Pedestal RMS'') and254 the one obtained by applying the extractor to the same extraction window255 (in MARS called: ``Pedestal RMS with Extractor Rndm''). One entry of each histogram corresponds to one256 pixel of the camera.257 The distributions have a negative mean in the case of the digital filter showing the258 ``filter'' capacity of that algorithm. It ``filters out'' between 0.12 photo-electrons night sky259 background for the extra-galactic star-field until 0.2 photo-electrons for the continuous light.260 261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%262 319 263 320 … … 315 372 \hline 316 373 \hline 317 \multicolumn{16}{|c|}{Statistical Parameters for $S=0$ units in $N_{\mathrm{phe}}$} \\374 \multicolumn{16}{|c|}{Statistical Parameters for $S=0$ (units in $N_{\mathrm{phe}}$) \rule{0mm}{6mm} \rule[-2mm]{0mm}{6mm} \hspace{-3mm}} \\ 318 375 \hline 319 376 \hline
Note:
See TracChangeset
for help on using the changeset viewer.