Changeset 6865


Ignore:
Timestamp:
03/20/05 21:37:32 (20 years ago)
Author:
hbartko
Message:
*** empty log message ***
File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/GC-Proposal/GC.tex

    r6864 r6865  
    184184   Hendrik Bartko      & MPI Munich    & hbartko@mppmu.mpg.de & data analysis, spectra, wobble mode
    185185\\ Adrian Biland       & ETH Zurich    & biland@particle.phys.ethz.ch & MC generation, Moon observations
    186 \\ Erica Bisesi        & Univ. Udine   & bisesi@fisica.uniud.it & dark matter halo modelling, clumpness
     186\\ Erica Bisesi        & Univ. Udine   & bisesi@fisica.uniud.it & dark matter halo modelling, clumpyness
    187187\\ Sebastian Commichau & ETH Zurich    & commichau@particle.phys.ethz.ch &
    188188 data analysis, spectra, geomagnetic effects
    189189\\ Pepe Flix           & IFAE Barcelona& jflix@ifae.es & data analysis, disp, spectra, dark matter
    190190\\ Sabrina Stark       & ETH Zurich    & lstark@particle.phys.ethz.ch  & data analysis, spectra
    191 \\ Wolfgang Wittek     & MPI Munich    & wittek@mppmu.mpg.de & padding, unfolding
     191\\ Wolfgang Wittek     & MPI Munich    & wittek@mppmu.mpg.de & padding, unfolding, disp
    192192\\
    193193\hline
     
    285285% All dark matter distributions that predict observable fluxes are cusped, yielding an approximately point-like source.
    286286
    287 Using fits of these dark matter profiles to the rotation data of the Milky Way predictions for the density profile $\rho_{\chi}$ of the dark matter can be made \cite{Fornego2004,Evans2004}. On the other hand, for a given model of the dark matter particles $m_{\chi},\;\langle \sigma v \rangle$ and $N_{\gamma}$ are determined. Combining the particle physics predictions with the predictions for the DM density profile
    288 predictions for the gamma flux from dark matter particle annihilation are derived.
     287Using fits of these dark matter profiles to the rotation data of the Milky Way predictions for the density profile $\rho_{\chi}$ of the dark matter can be made \cite{Fornego2004,Evans2004}. On the other hand, for a given model of the dark matter particles $m_{\chi},\;\langle \sigma v \rangle$ and $N_{\gamma}$ are determined. Combining the particle physics predictions with the predictions for the DM density profile, predictions for the gamma flux from dark matter particle annihilation are derived.
    289288%Assuming parameters for the SUSY models determine the neutralino mass, the thermally averaged annihilation cross section and the gamma yield. Combining both models about the dark matter distribution and SUSY
    290289
    291 Figure \ref{fig:exclusion_lmits} shows exclusion limits for MAGIC (solid straight lines) for the four most promising sources,
    292 in the plane $\langle \sigma v \rangle$ vs. $m_{\chi}$. The energy threshold $E_{\mathrm{th}}$ has been assumed to be 100 GeV. Due to its proximity the GC yields the largest expected flux from particle dark matter annihilation and thus the lowest exclusion limit. Nevertheless, this minimum measurable flux is more than one order of magnitude above the highest fluxes predicted by SUSY models (full circles). Also the flux measured by the HESS experiment is far above the theoretical expectation (dotted line).%N_{\gamma}(E_{\gamma}>E_{\mathrm{th}})
     290% (solid straight lines)   (full circles)
     291Figure \ref{fig:exclusion_lmits} shows exclusion limits for MAGIC for the four most promising sources,
     292in the plane $\langle \sigma v \rangle$ vs. $m_{\chi}$. The energy threshold $E_{\mathrm{th}}$ has been assumed to be 100 GeV. Due to its proximity the GC yields the largest expected flux from particle dark matter annihilation and thus the lowest exclusion limit. Nevertheless, this minimum measurable flux is more than one order of magnitude above the highest fluxes predicted by SUSY models for the NFW halo profile. For this profile also the flux measured by the HESS experiment is far above the theoretical expectation. In the extreme case of adiabatic compression some models might be in reach of the observations.
     293
     294
     295% (dotted line).%N_{\gamma}(E_{\gamma}>E_{\mathrm{th}})
    293296
    294297
     
    297300\includegraphics[totalheight=7cm]{mSugra_Scan2.eps}% {plot_DM_exclusion_1.eps}%{Dark_exclusion_limits.eps}
    298301\end{center}
    299 \caption[DM exclusion limits.]{Exclusion limits (solid straight lines) for the four most promising sources of dark matter annihilation radiation. The GC is expected to give the largest flux (lowest exclusion limits) amongst all sources. For energies above 700 GeV, the flux from the GC as observed by the HESS experiment (dotted line) is within the reach of MAGIC. The full circles represent flux predictions from some typical SUSY models.} \label{fig:exclusion_lmits}
     302\caption[DM exclusion limits.]{Exclusion limits for the four most promising sources of dark matter annihilation radiation. The GC is expected to give the largest flux (lowest exclusion limits) amongst all sources. Only in the extreme case of adiabatic compression observable fluxes are predicted.}% For energies above 700 GeV, the flux from the GC as observed by the HESS experiment (dotted line) is within the reach of MAGIC. The full circles represent flux predictions from some typical SUSY models.}
     303\label{fig:exclusion_lmits} %  (solid straight lines)
    300304\end{figure}
    301305
Note: See TracChangeset for help on using the changeset viewer.