Changeset 777
- Timestamp:
- 05/03/01 08:54:14 (24 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicDoku/strategy_mc_ana.tex
r773 r777 14 14 \title{Outline of a standard analysis for MAGIC \\ 15 15 (including Monte Carlo work)} 16 \author{ W. Wittek, H. Kornmayer\\17 \texttt{ wittek@mppu.mpg.de, h.kornmayer@web.de}}16 \author{H. Kornmayer, W. Wittek\\ 17 \texttt{h.kornmayer@web.de, wittek@mppmu.mpg.de}} 18 18 19 19 \date{ \today} … … 79 79 \begin{itemize} 80 80 \item Mode of observation :\\ 81 Data are taken in the wobble mode. This means that the telescope is 81 Data are taken in the wobble mode (\cite{konopelko99}). 82 This means that the telescope is 82 83 directed not to the position of the selected source but rather to a 83 84 position which has a certain offset ($\Delta\beta$) from the source … … 95 96 source, although the sky image is rotating in the camera. 96 97 97 The wobble mode has to be understood as an alternative to taking on 98 and off data in separate runs. Choosing the wobble mode thus implies 99 that one is taking on data only, from which also the 'off data' have to be 98 The sky region projected onto the camera would not remain the same 99 during tracking of a source, if $\Delta \beta$ were defined as a fixed 100 angle in the local angles $\Theta$ or $\phi$. This would not 101 necessarily be a disadvantage. In the case $\Delta \beta$ is taken as 102 a fixed angle in $\phi$ a sky region would be selected whose center 103 has the same zenith angle $\Theta$ as the source being observed. 104 105 The wobble mode has to be understood as an alternative to taking on- 106 and off-data in separate runs. Choosing the wobble mode thus implies 107 that one is taking on-data only, from which also the 'off-data' have to be 100 108 obtained by some procedure. 101 109 … … 130 138 131 139 Under the above assumption the only dependence to be considered for 132 the collection areas (see Section 3) is the dependence on the energy 133 of the cosmic ray particle and on the zenith angle $\Theta$. 140 the collection areas (see Section 3) is the dependence on the type of 141 the cosmic ray particle (gamma, proton, ...), on its energy and on the 142 zenith angle $\Theta$. 134 143 135 144 It has to be investigated whether also the azimuthal angle $\phi$ has to be … … 150 159 \item Image parameters :\\ 151 160 The standard definition of the image parameters is assumed. See for 152 example \cite{ ...}.161 example \cite{hillas85,fegan96,reynolds93}. 153 162 154 163 \item Impact parameter :\\ … … 168 177 169 178 \subsection{Formulas} 170 171 \begin{enumerate} 172 \item Differential gamma flux and collection area for a point source 173 174 The differential gamma flux from as point sourse $s$ is 179 \subsubsection{Differential gamma flux and collection area for a point source} 180 181 The differential gamma flux from a point sourse $s$ is given by 175 182 176 183 \begin{eqnarray} … … 180 187 where $dN^{\gamma}_s$ is the number of gammas from the source $s$ in 181 188 the bin $dE,\;dF,\;dt$ of energy, area and time respectively. We 182 denote the probabiolity for reconstructing a gamma shower with energy 183 $E$, zenith angle $\Theta$ and impact parameter $p$ by 184 $R^{\gamma}(E,\;\Theta,\;p)$. The effective collection area is defined as 185 186 \begin{eqnarray}{lll} 187 F^{\gamma}_{eff}\; &= &\int R^{\gamma}(E,\Theta,p)\;dF \\ 188 &= &2\pi\;\int R^{\gamma}(E,\Theta,p)\;p\;dp 189 denote the probability for reconstructing a gamma shower with energy 190 $E$, zenith angle $\Theta$ and position $F$ in a plane perpendicular 191 to the source direction by 192 $R^{\gamma}(E,\Theta,F)$. The effective collection area is defined as 193 194 \begin{eqnarray} 195 F^{\gamma}_{eff}(E,\Theta)\; &= &\int R^{\gamma}(E,\Theta,F)\cdot dF 196 \label{eq:form-1} 189 197 \end{eqnarray} 190 198 191 199 192 200 The number of $\gamma$ showers observed in the bin $\Delta \Theta$ of 193 the zenith angle $\Theta$ and in the bin $|Delta E$ of the energy is201 the zenith angle and in the bin $\Delta E$ of the energy is 194 202 then : 195 203 196 \begin{eqnarray}{lll} 197 \Delta N^{\gamma,obs}_s &= &\Delta T_{on}(\Theta) \cdot 198 \int_{\Delta E}{} \Phi^{\gamma}_s(E)\;F^{\gamma}_{eff}(E,\Theta)\;dE \\ 199 &\approx= &\Delta T_{on}(\Theta) \cdot 200 F^{\gamma}_{eff}(E),\Theta) \cdot \int_{\Delta E}{} 201 \Phi^{\gamma}_s(E)\;dE \\ 202 &= &\Delta T_{on}(\Theta) \cdot 203 F^{\gamma}_{eff}(E),\Theta) \cdot \Delta E \cdot 204 \overline{\Phi^{\gamma}_s}(E) \\ 205 \end{eqnarray} 206 207 \end{enumerate} 204 \begin{eqnarray} 205 \Delta N^{\gamma,obs}_s(E,\Theta) &= &\int R^{\gamma}(E,\Theta,F) \cdot 206 \Phi^{\gamma}_s(E) \cdot dE \cdot dF \cdot dt \\ 207 &= &\Delta T_{on}(\Theta) \cdot 208 \int_{\Delta E}{} \Phi^{\gamma}_s(E)\cdot 209 F^{\gamma}_{eff}(E,\Theta)\cdot dE \\ 210 &\approx &\Delta T_{on}(\Theta) \cdot 211 F^{\gamma}_{eff}(E,\Theta) \cdot \int_{\Delta E}{} 212 \Phi^{\gamma}_s(E)\cdot dE \label{eq:form0}\\ 213 &\approx &\Delta T_{on}(\Theta) \cdot 214 F^{\gamma}_{eff}(E,\Theta) \cdot \Delta E \cdot 215 \overline{\Phi^{\gamma}_s}(E) \label{eq:form1} 216 \end{eqnarray} 217 218 Here $\Delta T_{on}(\Theta)$ is the effective on-time for the data 219 taken in the zenith angle bin $\Delta \Theta$ and $\overline{\Phi^{\gamma}_s}(E)$ 220 is the average differential gamma flux in the energy bin $\Delta E$ : 221 222 \begin{eqnarray} 223 \overline{\Phi^{\gamma}_s}(E) &= 224 &\dfrac{1}{\Delta E}\;\int_{\Delta E}{} 225 \Phi^{\gamma}_s(E)\cdot dE 226 \end{eqnarray} 227 228 By inverting equation (\ref{eq:form1}) and setting 229 $\Delta E\;=\;(E^{up}-E^{low})\;\;\;\;\overline{\Phi^{\gamma}_s}(E)$ can 230 be written as 231 232 \begin{eqnarray} 233 \overline{\Phi^{\gamma}_s}(E) &= 234 &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)} 235 {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta) \cdot 236 (E^{up}-E^{low}) } 237 \label{eq:form2} 238 \end{eqnarray} 239 240 By means of equation (\ref{eq:form2}) $\overline{\Phi^{\gamma}_s}(E)$ 241 can be determined 242 from the measured $\Delta N^{\gamma,obs}_s(E,\Theta)$ and 243 $\Delta T_{on}(\Theta)$, using the collection area 244 $F^{\gamma}_{eff}(E,\Theta)$, which is obtained from MC data. 245 246 Equation (\ref{eq:form2}) is for a limited and fixed region of 247 the zenith angle. One may calculate $\overline{\Phi^{\gamma}_s}(E)$ from the 248 data taken at all $\Theta$, in which case 249 250 \begin{eqnarray} 251 \overline{\Phi^{\gamma}_s}(E) &= 252 &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)} 253 {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) 254 \cdot (E^{up}_i-E^{low}_i) } 255 \label{eq:form3} 256 \end{eqnarray} 257 258 If a fixed spectral index $\alpha$ is assumed for the differential 259 source spectrum 260 261 \begin{eqnarray} 262 \Phi^{\gamma}_s(E) &= &\Phi^{\gamma}_0 \cdot 263 \left(\dfrac{E}{GeV}\right)^{-\alpha} 264 \end{eqnarray} 265 266 one gets 267 268 \begin{eqnarray} 269 \int_{\Delta E}{} \Phi^{\gamma}_s(E) \cdot dE &= 270 &\dfrac{\Phi^{\gamma}_0}{1-\alpha} 271 \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - 272 \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]\cdot GeV 273 \label{eq:form4} 274 \end{eqnarray} 275 276 Inserting (\ref{eq:form4}) into (\ref{eq:form0}) yields 277 278 \begin{eqnarray} 279 \Phi^{\gamma}_0 &= 280 &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)} 281 {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta) 282 \cdot 283 \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - 284 \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]} 285 \cdot \dfrac{1-\alpha}{GeV} 286 \label{eq:form5} 287 \end{eqnarray} 288 289 which by summing over all $\Theta$ bins gives 290 291 \begin{eqnarray} 292 \Phi^{\gamma}_0 &= 293 &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)} 294 {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) 295 \cdot 296 \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} - 297 \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]} 298 \cdot \dfrac{1-\alpha}{GeV} 299 \label{eq:form6} 300 \end{eqnarray} 301 302 If applied to MC data, for which $\overline{\Phi^{\gamma}_s}(E)$ is known, 303 equation (\ref{eq:form1}) can also be used to 304 determine the collection area $F^{\gamma}_{eff}(E,\Theta)$ : 305 306 \begin{eqnarray} 307 F^{\gamma}_{eff}(E,\Theta) &= 308 &\dfrac{\Delta N^{\gamma,MC,reconstructed}_s(E,\Theta)} 309 {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{\gamma}_s}(E) \cdot 310 (E^{up}-E^{low})} 311 \end{eqnarray} 312 313 This procedure of determining $F^{\gamma}_{eff}(E,\Theta)$ amounts to 314 performing the integration in equation (\ref{eq:form-1}) by MC. An 315 important precondition is that in the MC simulation all gamma showers for 316 which $R^{\gamma}(E,\Theta,F)$ is greater than zero were 317 simulated. This means in particular that the MC simulation of gammas 318 extends to sufficiently large impact parameters. 319 320 Knowing $F^{\gamma}_{eff}(E,\Theta)$, the gamma fluxes can be obtained 321 from the experimental data using equation (\ref{eq:form2}), 322 (\ref{eq:form3}), (\ref{eq:form5}) or (\ref{eq:form6}). 323 324 Of course, the MC data sample used for calculating 325 $F^{\gamma}_{eff}(E,\Theta)$ and the experimental data sample used for 326 determining the gamma flux by means of $F^{\gamma}_{eff}(E,\Theta)$ 327 have to be defined identically in many respects : in particular 328 the set of cuts 329 and the offset between source position and telescope orientation have 330 to be the same in the MC data and the experimental data sample. 331 332 333 334 \subsubsection{Differential flux and collection area for 335 hadronic cosmic rays} 336 337 In the case of hadronic cosmic rays, which arrive from all directions 338 $\Omega$, the differential hadron flux is given by 339 340 \begin{eqnarray} 341 \Phi^{h}(E)\;=\;\dfrac{dN^{h}}{dE \cdot dF \cdot dt \cdot d\Omega} 342 \label{eq:form-12} 343 \end{eqnarray} 344 345 346 In contrast to (\ref{eq:form-1}) the effective collection area for hadrons 347 is defined as 348 349 \begin{eqnarray} 350 F^{h}_{eff}(E,\Theta)\; &= &\int R^{h}(E,\Theta,F,\Omega)\cdot dF 351 \cdot d\Omega 352 \label{eq:form-11} 353 \end{eqnarray} 354 355 Note that for a fixed orientation of the telescope $(\Theta,\phi)$ the 356 hadrons are coming from all directions $\Omega$. The reconstruction 357 efficiency $R^h(E,\Theta,F,\Omega)$ of hadrons therefore depends also 358 on $\Omega$. 359 360 With the definitions (\ref{eq:form-12}) and (\ref{eq:form-11}) 361 very similar formulas are obtained for hadrons as 362 were derived for photons in the previous section. For clarity they 363 are written down explicitely : 364 365 \begin{eqnarray} 366 \Delta N^{h,obs}(E,\Theta) &= &\int R^{h}(E,\Theta,F) \cdot 367 \Phi^{h}(E) \cdot dE \cdot dF \cdot dt \\ 368 &= &\Delta T_{on}(\Theta) \cdot 369 \int_{\Delta E}{} \Phi^{h}(E)\cdot 370 F^{h}_{eff}(E,\Theta)\cdot dE \\ 371 &\approx &\Delta T_{on}(\Theta) \cdot 372 F^{h}_{eff}(E,\Theta) \cdot \int_{\Delta E}{} 373 \Phi^{h}(E)\cdot dE \label{eq:form10}\\ 374 &\approx &\Delta T_{on}(\Theta) \cdot 375 F^{h}_{eff}(E,\Theta) \cdot \Delta E \cdot 376 \overline{\Phi^{h}}(E) \label{eq:form11} 377 \end{eqnarray} 378 379 380 \begin{eqnarray} 381 \overline{\Phi^{h}}(E) &= 382 &\dfrac{1}{\Delta E}\;\int_{\Delta E}{} 383 \Phi^{h}(E)\cdot dE 384 \end{eqnarray} 385 386 387 \begin{eqnarray} 388 \overline{\Phi^{h}}(E) &= 389 &\dfrac{\Delta N^{h,obs}(E,\Theta)} 390 {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta) \cdot 391 (E^{up}-E^{low}) } 392 \label{eq:form12} 393 \end{eqnarray} 394 395 396 397 \begin{eqnarray} 398 \overline{\Phi^{h}}(E) &= 399 &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)} 400 {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) 401 \cdot (E^{up}_i-E^{low}_i) } 402 \label{eq:form13} 403 \end{eqnarray} 404 405 406 \begin{eqnarray} 407 \Phi^{h}(E) &= &\Phi^{h}_0 \cdot 408 \left(\dfrac{E}{GeV}\right)^{-\beta} 409 \end{eqnarray} 410 411 412 \begin{eqnarray} 413 \int_{\Delta E}{} \Phi^{h}(E) \cdot dE &= 414 &\dfrac{\Phi^{h}_0}{1-\beta} 415 \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - 416 \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]\cdot GeV 417 \label{eq:form14} 418 \end{eqnarray} 419 420 421 \begin{eqnarray} 422 \Phi^{h}_0 &= 423 &\dfrac{\Delta N^{h,obs}(E,\Theta)} 424 {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta) 425 \cdot 426 \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - 427 \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]} 428 \cdot \dfrac{1-\beta}{GeV} 429 \label{eq:form15} 430 \end{eqnarray} 431 432 433 \begin{eqnarray} 434 \Phi^{h}_0 &= 435 &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)} 436 {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) 437 \cdot 438 \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} - 439 \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]} 440 \cdot \dfrac{1-\beta}{GeV} 441 \label{eq:form16} 442 \end{eqnarray} 443 444 445 Note that $\Phi^{h}(E)$, $\Phi^h_0$ and $F^{h}_{eff}(E,\Theta)$ differ 446 from $\Phi^{\gamma}(E)$, $\Phi^{\gamma}_0$ and 447 $F^{\gamma}_{eff}(E,\Theta)$ by the dimension of the 448 solid angle, due to the additional factor $d\Omega$ in 449 (\ref{eq:form-12}) and (\ref{eq:form-11}). 450 451 Like in the case of gammas from point sources, the effective area 452 $F^h_{eff}(E,\Theta)$ for 453 hadrons can be calculated by applying equation (\ref{eq:form11}) to MC 454 data, for which $\overline{\Phi^h}(E)$ is known : 455 456 \begin{eqnarray} 457 F^{h}_{eff}(E,\Theta) &= 458 &\dfrac{\Delta N^{h,MC,reconstructed}(E,\Theta)} 459 {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{h}}(E) \cdot 460 (E^{up}-E^{low})} 461 \end{eqnarray} 462 463 Similar to the case of gammas from point sources, 464 this procedure of determining $F^h_{eff}(E,\Theta)$ amounts to 465 performing the integrations in equation (\ref{eq:form-11}) by MC. The 466 precondition in the case of hadrons is that in the 467 MC simulation all hadron showers for 468 which $R^{h}(E,\Theta,F,\Omega)$ is greater than zero were 469 simulated. So the simulation should not only include large enough 470 impact parameters but also a sufficiently large range of $\Omega$ at 471 fixed orientation $(\Theta,\phi)$ of the telescope. 472 473 Knowing $F^{h}_{eff}(E,\Theta)$, the hadron fluxes can be obtained 474 from the experimental data using equation (\ref{eq:form12}), 475 (\ref{eq:form13}), (\ref{eq:form15}) or (\ref{eq:form16}). 476 477 478 \subsubsection{Measurement of the absolute differential flux of gammas 479 from a point source by normalizing to the flux of hadronic cosmic rays} 480 481 In section 3.2.1 a procedure was described for measuring the absolute 482 differential flux of gammas from a point source. The result for 483 $\overline{\Phi^{\gamma}_s}(E)$ depends on a reliable determination of 484 the collection area $F^{\gamma}_{eff}(E,\Theta)$ by MC and the 485 measurement of the on-time $\Delta T_{on}(\Theta)$. 486 487 The dependence on the MC simulation may be reduced by normalizing to 488 the known differential flux of hadronic cosmic rays. Combining 489 equations (\ref{eq:form2}) and (\ref{eq:form12}), and assuming that 490 $\Delta T_{on}(\Theta)$ is the same for the gamma and the hadron 491 sample, yields 492 493 \begin{eqnarray} 494 \dfrac{\overline{\Phi^{\gamma}_s}(E)} 495 {\overline{\Phi^{h}}(E)} &= & 496 \dfrac{\Delta N^{\gamma,obs}(E,\Theta)} 497 {\Delta N^{h,obs}(E,\Theta)} \cdot 498 \dfrac{F^{h}_{eff}(E,\Theta)} 499 {F^{\gamma}_{eff}(E,\Theta)} 500 \label{eq:form20} 501 \end{eqnarray} 502 503 If $\overline{\Phi^{h}}(E)$ is assumed to be known from other 504 experiments, equation (\ref{eq:form20}) allows to determine 505 $\overline{\Phi^{\gamma}_s}(E)$ from 506 the experimental number of gamma and hadron showers using the 507 collection areas for gammas and hadrons from the MC. Since only the 508 ratio of the collection areas enters the dependence on the 509 MC simulation is reduced. 510 511 If data from all zenith angles are to be used the corresponding 512 expression for $\overline{\Phi^{\gamma}_s}(E)$ is (see equations 513 (\ref{eq:form3}) and (\ref{eq:form13})) 514 515 \begin{eqnarray} 516 \dfrac{\overline{\Phi^{\gamma}_s}(E)} 517 {\overline{\Phi^{h}}(E)} &= & 518 \dfrac{\sum_i \Delta N^{\gamma,obs}(E,\Theta_i)} 519 {\sum_i \Delta N^{h,obs}(E,\Theta_i)} \cdot 520 \dfrac{\sum_i \Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) 521 \cdot (E^{up}_i-E^{low}_i)} 522 {\sum_i \Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) 523 \cdot (E^{up}_i-E^{low}_i)} 524 \label{eq:form21} 525 \end{eqnarray} 526 527 Clearly, the set of cuts defining the gamma sample is different from 528 the set of cuts defining the hadron sample. However, 529 $\Delta N^{\gamma,obs}$ and $\Delta N^{h,obs}$ can still be measured 530 simultaneously, in which case $\Delta T_{on}(\Theta_i)$ is the same for 531 the gamma and the hadron sample. Measuring gammas and hadrons 532 simultaneously has the advantage that variations of the detector 533 properties or of the atmospheric conditions during the observation 534 partly cancel in (\ref{eq:form20}) and (\ref{eq:form21}). 535 536 If fixed spectral indices $\alpha$ and $\beta$ are assumed for the 537 differential 538 gamma and the hadron fluxes respectively one obtains for the ratio 539 $\Phi^{\gamma}_0\;/\;\Phi^h_0$ 540 (see (\ref{eq:form5}) and (\ref{eq:form15})) 541 542 \begin{eqnarray} 543 \dfrac{\Phi^{\gamma}_0} 544 {\Phi^{h}_0} &= & 545 \dfrac{\Delta N^{\gamma,obs}(E,\Theta)} 546 {\Delta N^{h,obs}(E,\Theta)} \cdot 547 \dfrac{F^{h}_{eff}(E,\Theta) \cdot 548 \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - 549 \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]} 550 {F^{\gamma}_{eff}(E,\Theta) 551 \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - 552 \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]} \cdot 553 \dfrac{1-\beta}{1-\alpha} 554 \label{eq:form22} 555 \end{eqnarray} 556 557 or, when using the data from all zenith angles, 558 (see (\ref{eq:form6}) and (\ref{eq:form16})) 559 560 \begin{eqnarray} 561 \dfrac{\Phi^{\gamma}_0} 562 {\Phi^{h}_0} &= & 563 \dfrac{\sum_i\Delta N^{\gamma,obs}(E,\Theta_i)} 564 {\sum_i\Delta N^{h,obs}(E,\Theta_i)} \cdot 565 \dfrac{\sum_i F^{h}_{eff}(E,\Theta_i) \cdot 566 \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} - 567 \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]} 568 {\sum_i F^{\gamma}_{eff}(E,\Theta_i) 569 \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} - 570 \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]} \cdot 571 \dfrac{1-\beta}{1-\alpha} 572 \label{eq:form23} 573 \end{eqnarray} 574 575 208 576 209 577 % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 210 578 % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 211 579 % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 580 212 581 213 582 \section{MC work} … … 461 830 \section{Analysis of the real data} 462 831 832 \begin{thebibliography}{xxxxxxxxxxxxxxx} 833 \bibitem{fegan96}D.J.Fegan, Space Sci.Rev. 75 (1996)137 834 \bibitem{hillas85}A.M.Hillas, Proc. 19th ICRC, La Jolla 1 (1985) 155 835 \bibitem{konopelko99}A.Konopelko et al., Astropart. Phys. 10 (1999) 836 275 837 \bibitem{reynolds93}P.T.Reynolds et al., ApJ 404 (1993) 206 838 \end{thebibliography} 839 840 463 841 \end{document} 464 842 % … … 486 864 %% End: 487 865 %% EOF 866 867 868 869 870 871 872 873 874
Note:
See TracChangeset
for help on using the changeset viewer.