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Chapter 1

Introduction

The FACT Trigger Unit (FTU) is a Mezzanine Card attached to the FACT Pre-Amplifier
(FPA) board. On the FPA, the analog signals of nine adjacent pixels are summed up, and the
total signal is compared to a threshold. Four such trigger patches are hosted by one FPA. The
corresponding four digital trigger signals are processed further by the FTU, generating a single
trigger primitive out of them. A total of 40 FTU boards exists in the FACT camera. Their
trigger primitives are collected at one central point, the FACT Trigger Master (FTM)1. The
FTM serves also as slow control master for the FTUs, which are connected in groups of ten
to RS485 data buses for this purpose. These buses are realized on the midplanes of the four
crates inside the camera.

The main component on each FTU is a FPGA2, fulfilling different tasks within the board. The
purpose of this document is to describe the main features of the firmware of this device, which
is identical for all 40 boards. After a brief summary of the FTU functionality and its digital
components, a general overview of the firmware design is given. In the following, all FPGA
registers available for reading and writing are listed. Afterwards the communication with the
FTM is detailed, and the most important finite state machines implemented are explained.

1For more information about the FACT trigger system see: P. Vogler, Development of a trigger system for a
Cherenkov Telescope Camera based on Geiger-mode avalanche photodiodes, Master Thesis, ETH Zurich, 2010.

2Xilinx Spartan-3AN family (XC3S400AN-4FGG400C); for programming information see: http://www.
xilinx.com/support/documentation/user_guides/ug331.pdf (Spartan-3 Generation FPGA User Guide).
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Chapter 2

FTU Tasks and Digital Components

In order to define the thresholds for the individual trigger patches, four channels of an octal
12-bit Digital-to-Analog Converter (DAC) are used. This chip1 is accessed by the FPGA
through a Serial Peripheral Interface (SPI). A fifth channel of the same DAC is employed
to control a n-out-of-4 majority coincidence logic, generating the trigger primitive out of the
patch signals. The FTU can furthermore switch off single pixels within the trigger patches
by disabling the corresponding input buffers just before the summation stage on the FPA.
However, the decision to switch off a pixel for the trigger or to change the threshold for a patch
is not taken by the FTU itself, but has to come in form of a command from the FTM.

For each of the four trigger patches, the FTU counts the number of triggers within a certain
time period. Also the number of trigger primitives after the n-out-of-4 majority coincidence
is counted. In this way, the rates per patch and per board are known for each FTU. The
counters are implemented inside the FPGA with a range of 30 bit. In case the number of
triggers exceeds this limit, an overflow flag is set. The counting period is changeable from
outside between 500ms and 128 s with a resolution of 8 bit.

Each FTU board has one RS485 communication interface to the FTM. Ten boards are connected
to one bus, where they are operated in slave-mode. Only in case a read or write command for
a specific FTU arrives from the FTM, this board will react and answer. Broadcast commands
are not supported by the current firmware version. To avoid data collisions on the buses, the
FTM has to address the FTUs one by one to read out the rates for example. A RS485 interface
is implemented inside the FPGA, including frame receiving, data buffering and instruction de-
coding. It is minimal in the sense that no stacked commands, command buffering or interrupts
are supported. Outside the FPGA, a RS485 driver/receiver chip translates the signal levels
between the differential bus lines and the FPGA logic levels. This chip is enabled for data
transmission or data receiving, respectively.

1Details concerning specific electronics components as well as schematics can be found at the FACT con-
struction page: http://ihp-pc1.ethz.ch/FACT (password protected).
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Chapter 3

Firmware Organization

The FTU firmware is written in VHDL (VHSIC Hardware Description Language). For some of
its components the Xilinx core generator tools1 have been used. In this chapter, an overview
of the firmware content is given, followed by a listing of the files containing the source code.
The complete project is available from the FACT repository2.

3.1 Design Overview

The highest level entity in the firmware is called FTU_top. Its ports are the physical connections
of the FPGA on the FTU board. Inside FTU_top other entities are instantiated, representing
different functional modules. They are discussed in the following subsections. For important
numbers and constants the package ftu_constants inside the library ftu_definitions has
been created. A second package ftu_array_types contains customized array types.

3.1.1 FTU_clk_gen

This is an interface to the Digital Clock Managers (DCM) of the FPGA. At the moment only
one DCM is used, providing the central 50MHz clock. Once the DCM has locked and is
providing a stable frequency FTU_clk_gen sends a ready signal. This is a prerequisite for the
board to enter the RUNNING state. FTU_clk_gen also generates a central 1MHz clock for the
rate counters (by division, not using a second DCM). In addition, some modules within the
FTU design have their own built-in clock dividers to generate custom frequencies.

3.1.2 FTU_dual_port_ram64

All FTU registers which can be set from outside during operation are stored in a dual-port block
RAM (Random Access Memory). The FPGA provides specific resources for this purpose,
and therefore the RAM has been created using the Xilinx core generator tools. The entity
FTU_dual_port_ram64 serves as an interface to the RAM, the actual gate level description is

1Xilinx ISE Design Suite, release 11.5, homepage: http://www.xilinx.com (downloads, documentation).
2Project page: https://fact.isdc.unige.ch/trac (password protected).
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stored directly in the net-list file FTU_dual_port_ram64.ngc. Thus this file is part of the design,
although not available as source code. The RAM has a size of 64 bytes and two fully featured
ports to access its content. One port is based on 1-byte words, the other one on 2-byte words.
The corresponding address space is presented together with the register tables in chapter 4. In
addition to the control registers, also the current counter readings are stored in the RAM.

3.1.3 FTU_rate_counter

Here the trigger counting is done. A rate counter has a range of 30 bit and counts until a
defined period is finished. This period is derived from an 8-bit prescaling value y as T = y+1

2 s.
In total five such counters are instantiated which are running and set up synchronously. If the
FTU settings are changed during operation all counters are reset. Only in case a full period
has been finished without interruption, the number of counts from each counter is stored in the
RAM. An overflow flag is set by the counters if necessary.

3.1.4 FTU_spi_interface

The octal DAC defining the trigger thresholds is controlled by means of a SPI. As soon as the
FTU_spi_interface entity receives a start signal, it will clock out the data pending at one
of its input ports to the DAC. These data are provided in form of a customized array. The
generation of the serial clock, the distribution of the DAC values to the right addresses and
the actual transmission of the data to the chip are performed by three more entities, which
are instantiated inside FTU_spi_interface. Once the transmission has started or finished,
respectively, a signal is pulled.

3.1.5 FTU_rs485_control

The communication between the FTU and the FTM is handled by a RS485 interface. The
top level entity of this module is called FTU_rs485_control. It contains a state machine and
further sub-entities for frame receiving or transmitting, byte buffering and instruction decoding.
The details of the underlying protocol and the possible instructions are detailed in chapter 5.
In case an instruction has been decoded successfully, the main FTU control is informed and
the corresponding data (like new DAC values) are provided. After the command has been
executed an answer is send to the FTM. FTU_rs485_control has direct control of the involved
transmitter/receiver chip outside the FPGA and takes care that it is only transmitting if this
particular FTU has been contacted by the FTM. In this way also the rates are send on request.
The baud rate is adjustable and defined in the library ftu_definitions.

3.1.6 FTU_control

This entity contains the main state machine of the FTU firmware. It receives control, ready,
start, etc. flags from all modules and interfaces and reacts accordingly by changing to a new
state. This may be done with some delay, depending on what the board is doing at the moment.
FTU_control is furthermore the only place in the design from where the RAM is read or written.
The state machine is described in more detail in chapter 6.
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3.1.7 FTU_dna_gen

In order to be able to unambiguously identify each FTU during operation, the device identifier3

(DNA) of its FPGA is used. After power-up this DNA is read-out once by FTU_dna_gen and
stored for later usage inside FTU_top as a permanent signal.

3.2 File Structure

Table 3.1 specifies all source files necessary to compile the firmware for the FTU boards4. For
each file its location path inside the directory firmware of the FACT repository is stated.
Furthermore it is indicated whether a certain file is needed for the simulation and/or the
hardware implementation. The design entities described in section 3.1 are contained in those
files which have the corresponding prefix. The file ucrc_par.vhd has been downloaded from
OpenCores5.

file name location simulation implement comment
FTU_top.vhd FTU yes yes top level entity
FTU_top_tb.vhd FTU yes no test bench
ftu_definitions.vhd FTU yes yes library
ftu_board.ucf FTU no yes pin constraints
FTU_control.vhd FTU yes yes top state machine
FTU_clk_gen.vhd FTU/clock yes yes clock interface
FTU_dcm_50M_to_50M.vhd FTU/clock yes yes clock manager
FTU_rate_counter.vhd FTU/counter yes yes trigger counter
FTU_spi_interface.vhd FTU/dac_spi yes yes SPI top entity
FTU_spi_clock_gen.vhd FTU/dac_spi yes yes serial clock
FTU_distributor.vhd FTU/dac_spi yes yes DAC loop
FTU_controller.vhd FTU/dac_spi yes yes low level SPI
FTU_dna_gen.vhd FTU/dna yes yes DNA readout
FTU_dual_port_ram64.vhd FTU/ram64 yes yes RAM interface
FTU_dual_port_ram64.ngc FTU/ram64 no yes RAM netlist
FTU_rs485_control.vhd FTU/rs485 yes yes RS485 top entity
FTU_rs485_interpreter.vhd FTU/rs485 yes yes data decoding
FTU_rs485_receiver.vhd FTU/rs485 yes yes 28-byte buffer
FTU_rs485_interface.vhd FTU/rs485 yes yes low level RS485
ucrc_par.vhd FTU/rs485 yes yes check sum

Table 3.1: List of all source files needed to compile the FTU firmware.

3This unique identifier has 57 bit and is built-in for each FPGA of the Spartan-3A series. For more infor-
mation see: http://www.xilinx.com/support/documentation/user_guides/ug332.pdf (Spartan-3 Generation
Configuration User Guide).

4As of October 2010; the file structure might still be changed.
5Ultimate CRC project: http://www.opencores.org/cores/ultimate_crc (free software under the terms

of the GNU General Public License).
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Chapter 4

Register Tables

There are 41 accessible control and rate registers implemented in the FTU firmware, each with
a size of 8 bit. They are organized as a 64-byte RAM (see also section 3.1.2), the last 23 bytes
of which are empty and serve as spares. Table 4.1 presents an overview of the address space
inside the RAM, more details can be found in tables 4.2 - 4.5. Registers marked as read-only
cannot be written by the FTM, but are updated by the FTU itself.

RAM address register block comment
00 . . . 07 enable patterns read/write
08 . . . 27 rate counters read-only
28 . . . 37 DAC settings read/write

38 prescaling y (see section 3.1.3) read/write
39 overflow bits read-only
40 check sum error counter read-only

41 . . . 63 empty spare

Table 4.1: Overview of the register mapping inside the RAM.

4.1 Enable Patterns

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
00 En_A7 En_A6 En_A5 En_A4 En_A3 En_A2 En_A1 En_A0
01 En_A8
02 En_B7 En_B6 En_B5 En_B4 En_B3 En_B2 En_B1 En_B0
03 En_B8
04 En_C7 En_C6 En_C5 En_C4 En_C3 En_C2 En_C1 En_C0
05 En_C8
06 En_D7 En_D6 En_D5 En_D4 En_D3 En_D2 En_D1 En_D0
07 En_D8

Table 4.2: Mapping of the 4× 9 enable bits inside the RAM.
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4.2 Rate Counters

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
08 Ct_A7 Ct_A6 Ct_A5 Ct_A4 Ct_A3 Ct_A2 Ct_A1 Ct_A0
09 Ct_A15 Ct_A14 Ct_A13 Ct_A12 Ct_A11 Ct_A10 Ct_A9 Ct_A8
10 Ct_A23 Ct_A22 Ct_A21 Ct_A20 Ct_A19 Ct_A18 Ct_A17 Ct_A16
11 0 0 Ct_A29 Ct_A28 Ct_A27 Ct_A26 Ct_A25 Ct_A24
. . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Ct_D7 Ct_D6 Ct_D5 Ct_D4 Ct_D3 Ct_D2 Ct_D1 Ct_D0
21 Ct_D15 Ct_D14 Ct_D13 Ct_D12 Ct_D11 Ct_D10 Ct_D9 Ct_D8
22 Ct_D23 Ct_D22 Ct_D21 Ct_D20 Ct_D19 Ct_D18 Ct_D17 Ct_D16
23 0 0 Ct_D29 Ct_D28 Ct_D27 Ct_D26 Ct_D25 Ct_D24
24 Ct_T7 Ct_T6 Ct_T5 Ct_T4 Ct_T3 Ct_T2 Ct_T1 Ct_T0
25 Ct_T15 Ct_T14 Ct_T13 Ct_T12 Ct_T11 Ct_T10 Ct_T9 Ct_T8
26 Ct_T23 Ct_T22 Ct_T21 Ct_T20 Ct_T19 Ct_T18 Ct_T17 Ct_T16
27 0 0 Ct_T29 Ct_T28 Ct_T27 Ct_T26 Ct_T25 Ct_T24

Table 4.3: Mapping of the four patch counter (A–D) and the trigger counter reading (T) inside
the RAM. The two most significant bits of the 32 bits per counter are always set to 0.

4.3 DAC Settings

address data[7 . . . 0]
28 DAC_A_[7 . . . 0]
29 DAC_A_[15 . . . 8]
. . . . . .

34 DAC_D_[7 . . . 0]
35 DAC_D_[15 . . . 8]
36 DAC_H_[7 . . . 0]
37 DAC_H_[15 . . . 8]

Table 4.4: Mapping of the DAC values (12 bit) for the thresholds (DAC_A – DAC_D) and
the n-out-of-4 logic (DAC_H) inside the RAM; the bits 15 . . . 12 are filled up with zeros.

4.4 Overflow Bits

bit 7 . . . 5 4 3 2 1 0
0 not used overflow_T overflow_D overflow_C overflow_B overflow_A

Table 4.5: Bit mapping inside the RAM overflow register (address 39).
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Chapter 5

Communication with FTM

The slow control system between the FTU boards (slaves) and the FTM (master) is based
on two transmission sequences: Either the FTM is sending data to a particular FTU, or a
particular FTU is answering to the FTM. Broadcast commands are not supported. Each board
has a unique 1-byte address for identification on the RS485 buses, which is 0–63 for the FTUs1

and 192 for the FTM. The transmission sequences are of fixed length (28 byte) and, if necessary,
filled up with arbitrary data. In case the data transmission is disturbed or not complete, a
time-out system ensures that the communication doesn’t get stuck2. In the following, the slow
control protocol, the instruction codes and the check sum error-detection are discussed.

5.1 Transmission Protocol

Table 5.1 summarizes the structure of the data sequences sent between the FTM and the FTUs.
A FTU only replies if contacted by the FTM. The answer is a copy of the received data package
with swapped source/destination address and eventually the requested data. Byte 26 is used
to transmit the number of CRC errors counted by a FTU until a valid sequence arrived. In
that case the number of errors is communicated and the error counter is set to 0.

byte content comment
00 start delimiter ASCI @ (binary "01000000")
01 destination address 192 (FTM) or slot position 0–63 (FTUs)
02 source address 192 (FTM) or slot position 0–63 (FTUs)
03 firmware ID firmware version of source FPGA
04 instruction / info see section 5.2

05 . . . 25 21 byte data DACs, rates, etc.
26 CRC error counter number of CRC errors on FTU
27 check sum CRC-8-CCITT, see section 5.3

Table 5.1: Composition of the FTM-FTU slow control data packages.

1Two bits are used to specify the crate, four bits to indicate the slot position within a crate. This 6-bit
address is different from the 57-bit DNA which is FPGA-bound (see section 3.1.7).

2At a baud rate of 250 kHz, for example, this time-out is set to 2ms on the FTU side.
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5.2 Instruction Table

A set of eight instructions has been foreseen for the communication between the FTM and the
FTUs. They are listed in table 5.2 including a short description. In case a FTU receives the
ping-pong command, it returns also the DNA of its FPGA (see section 3.1.7). Combined with
the 6-bit address, which is related to the geographical position insided the camera crates, it is
therefore possible to identify each FTU.

code instruction description
00 set DAC write new values into DAC registers
01 read DAC read back content of DAC registers
02 read rates read out rates and overflow bits
03 set enable write new patterns into enable registers
04 read enable read back content of enable registers
05 ping-pong ping a FTU to check communication (see text)
06 set counter mode write into the prescaling register
07 read counter mode read back prescaling and overflow registers

Table 5.2: Instruction set for the FTM-FTU slow control communication.

5.3 CRC Calculation

The integrity of the 28-byte data packages is evaluated by means of a Cyclic Redundancy Check
(CRC). An 8-CCITT CRC has been chosen which is based on the polynomial x8 + x2 + x + 1
(100000111). Bytes 0–26 of table 5.1 constitute the input vector for the CRC calculation, the
resulting 1-byte check sum being compared with the one transmitted by the FTM (byte 27
in table 5.1). If the check sum turns out to be wrong, the FTU doesn’t answer and increases
the number of error counts in its corresponding register (RAM address 40). The FTM will
consequently run into a time-out and repeat its command.
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Chapter 6

Finite State Machines

There are several finite state machines (FSM) used in the FTU firmware design, distributed
over several files. They are in principal all running in parallel, some of them are, however, only
waking up if triggered by the main control. This is for example the case for the SPI interface
controlling the DAC settings. Since the most complicated FSMs are inside FTU_control and
FTU_rs485_control (see section 3.1), they are explained in more detail in this chapter.

6.1 Main Control FSM

This state machine has full control over the FTU board during operation. After power-up or
reboot it is in an IDLE state, waiting for the DCMs to lock. Afterwards it passes through two
INIT sequences, where default values for all registers are written to the RAM and the DNA is
read out. The defaults are all defined in the library ftu_definitions. When the initialization
has finished, the RUNNING state is entered. This is the principal state during which the board
is counting triggers. RUNNING is left only if a counting period has finished and the number of
counts is stored in the RAM, or if a command has arrived via RS485 and is communicated by the
responsible FSM (see next section). A dedicated state has been implemented for each possible
command and, if appropriate, also for the subsequent change of settings (e.g. CONFIG_DAC). In
any case the board goes back to RUNNING.

6.2 RS485 Control FSM

The main and default state of this FSM is RECEIVE. This means that the RS485 receiver is
enabled and the board is waiting for commands from the FTM. If a full 28-byte package has
arrived and correctly been decoded1, the main control FSM is informed about the instruction
(e.g. new DACs). The RS485 FSM then enters a wait state (e.g. SET_DAC_WAIT) until it gets an
internal ready signal. It subsequently sends the answer to the FTM (e.g. SET_DAC_TRANSMIT)
and goes back to RECEIVE. While during RECEIVE the RS485 FSM and all processes below are
running in parallel to the main control FSM, the sequence of states in case a command has
arrived is prescribed.

1This involves a further state machine which is inside the file FTU_rs485_interpreter.vhd
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