
First G-APD Cherenkov Telescope

FACT

Technical Note

The FACT GPS Module

Max Ludwig Knötig

October 2013

For some time now the collaboration had ideas that required to know very precicely at what
time the triggered showers occur. In particular it became clear that the Crab pulsar spectrum
has no apparent cuto� below 400GeV. Furthermore, in order to study the reconstruction, it
would be nice to have a way of cross calibrating with MAGIC showers. The FACT GPS module
is the solution to the accurate timing problem. This document starts with an introduction about
the Physics motivation. Then I present the system from the hardware side. In the third section,
the custom �rmware is explained, followed in the fourth section by a description of the ethernet
server commands. Last, in the �fth section, I give the lab tests and their results.

Contents

1 Introduction 7

1.1 Physics Motivation . 7
1.2 Timing Problem Solution . 7

2 Hardware 9

2.1 Box Outside . 9
2.1.1 Connections . 9
2.1.2 LEDs . 10

2.2 Box inside . 10
2.2.1 Overview Schematic . 10
2.2.2 Arduino Ethernet . 12
2.2.3 Protoshield . 12
2.2.4 Venus GPS . 12
2.2.5 USB2SERIAL . 12

2.3 Signals . 13

3 Firmware 17

3.1 Venus GPS . 17
3.2 Arduino . 17

3.2.1 Serial Communication, NEMA Parsing 17
3.2.2 Ethernet . 18
3.2.3 Special Remarks . 18

4 Ethernet Server Commandos 19

4.1 How to Connect . 19
4.2 Commandos . 20
4.3 Limitations . 20

5 Lab Tests 21

5.1 Raw PPS from Venus GPS . 21
5.2 NAND @ DC-Voltage Source . 22
5.3 44m Lemo Cable Transmission . 22
5.4 veto_60 . 22
5.5 FTM Trigger In: Ext1 & Ext2 . 24
5.6 Ethernet Commandos . 24

6 Attachments 27

6.1 External Schematics . 27

6 Contents

6.2 Package List La Palma . 27
6.3 Set-up Instructions for Watz . 28

1 Introduction

1.1 Physics Motivation

During the design of the FACT electronics it was decided a very precise timing not being
necessary. It was not evident that pulsars emit such high energy gamma-rays that FACT could
observe them. In fact, most Pulsars are believed to have a cuto� at some 10GeV. The �ndings
from MAGIC[1] and VERITAS[2] however changed the picture. Their results indicate that
pulsed signal above FACT threshold might exist, and since we need to take a large amount
of Crab data for calibration purposes, these data would be an ideal sample to look for pulsed
signals. Also, it became clear that in order to cross calibrate the FACT telescope with the
MAGIC telescopes, we would need a way of identifying the simultaneously seen showers. On
the 11. September Adrian wrote an email with his view of the situation and a call for action
to build a system that allows us to measure the absolute timing to µs precision.

1.2 Timing Problem Solution

The initial idea:

Using a GPS to get precise timing for FACT
...
While there is no precise absolut timing signal, the timers on the FAD boards

deliver good relative timing information. It seems possibile to synchronize these to
an absolut time: There exists a connector for an external trigger signal. If a precise
clock (e.g. GPS) can be connected there, this can be (ab)used for the needed
synchronization.
Commercial GPS receivers typically deliver following signals: a) PPS pulse per

second: a pulse synchronized to UTC seconds with a precision of 200picoseconds
and duration of >10msec (typical pulse length 100msec) b) an ASCII string con-
taining detailed information about the last PPS over RS232 or USB
One is tempted to use the PPS for the external trigger, and feed the RS232 to

the DAQ computer. Unfortunately, due to the ethernet based readout we cannot
exclude delays between camera and computer on the level of several seconds. There-
fore, an information with longer intervalls is needed to ensure correlation between
FAD and computer. The duration of the Signal is no problem, since the FTM is
looking for rising edges only; nevertheless the pulse must probably be modi�ed,
since the FTM needs NIM logic.
...
Looking around: GPS with precise PPS can be bought for less than 50 Euro.
...

8 1.2 Timing Problem Solution

Possible implementations:
...
c) Buy an inexpensive GPS with PPS. In addition, a FPGA/ microcontroller/Ar-

duino/.... is reading the ASCII string. In case the ASCII string indicates a time
XX;XX:59, veto the next PPS. ...

Adrian Biland, Email 11.Sep 2013 fact-online mailinglist

In the following I would like to present this idea worked out in detail.

2 Hardware

2.1 Box Outside

This is the resulting FACT GPS module box:

Figure 2.1: The FACT GPS module

The box is a plastic 150mmx80mmx80mm box to house the electronics. On the outside there
are three status LEDs and four connectors for power, ethernet, the antenna and for the trigger.

2.1.1 Connections

Four connectors sit the sides of the box, two on each small side. They look like in Fig. 2.2.
Each connector and LED has a label attached. The connectors are used for connecting the
power to the arduino with a standard 12V DC power supply. The power connector and the
ethernet connector are mounted on the Arduino Ethernet. The SMA GPS antenna and the
LEMO trigger signal connectors are feedthroughs.

10 2.2 Box inside

Figure 2.2: The FACT GPS module sides

2.1.2 LEDs

The LEDs, located on the same side as the antenna and trigger feedthroughs, can be used for
checking the system status:

• The left LED is the Arduino LED. It is ON when the Arduino is switched on. It is
BLINKING with the rate/2 that the Arduino parses (if at all) the NEMA message from
the GPS chip (typically 8Hz/2)

• The middle LED is the Venus GPS LED. It is ON when the GPS chip is on. It is
BLINKING when the chip has a GPS lock with a rate of the PPS/2 = 0.5Hz

• The right LED is the Veto LED. It is ON when the VETO is active, i.e. no triggers are
sent. It is OFF when the Veto is inactive. When in veto_60 mode it is ON for one second
during the veto around the 59 - 00 GPS UTC second.

2.2 Box inside

The opened box has the electronics attached to the top. It looks like in Fig. 2.3 Attached to
the Arduino one can see the USB2Serial module used to program the microcontroller.

2.2.1 Overview Schematic

The schematic is shown in Fig. 2.4 It basically consists of the Sparkfun Venus GPS module, a
TI CD74AC00 NAND gate, and some basic electronics components. Everything is povered via
the 5V Arduino breakout. The 5V are converted via two diodes down to about 3.3V in order to
power the Venus GPS chip. When no current is �owing, the voltage inbetween the 5V Arduino
pin and the GPS chip would be 5V, if not for the resistor R1.
The Arduino talks to the GPS chip via its serial communication pins RX and TX, where its

NEMA message is parsed. The PPS from the GPS chip is fed to the NAND gate. Whenever

2 Hardware 11

Figure 2.3: The FACT GPS module opened

the Arduino reads seconds = 59, the active low VETO is enabled, and the PPS signals are
vetoed. In this way it is later possible to convert the TTL signal easily into NIM signals.

The last part of the board is used to convert the active low TTL signals into NIM pulses. It
uses the fact that the coax cable as viewed from the NAND gate has an impedance of 50Ω, that
can be used in a voltage divider with resistor R2 in order to get the signal amplitude down.
The capacitor C4 is used to AC couple the signal to the output. This way, the active signal
becomes negative. The resistor R3 is chosen such in order to make the AC coupling constant
large enough for the 4ms PPS signals. A small capacitor C5 is used to make the rising edges
fast (<5ns).

Overall the following components were installed:

• 150mmx80mmx80mm plastic box

• Three green LEDs with feedthroughs

• One SMA cable and feedthrough for the antenna

• One active GPS SMA antenna, 2m, magnetic in order to stick to roofs

• One Lemo connector, one Lemo cable and one Lemo feedthrough for the trigger signals

• One Arduino Ethernet

• One Arduino Stackable Protoshield V5

• The Sparkfun Venus GPS module with SMA connector

12 2.2 Box inside

• One USB2Serial board in order to program the Arduino

• One Ti CD74AC00 fast NAND gate

• Various electronics components according to the schematic Fig. 2.4 from the workshop

• One 12V DC powersupply

• Cables to connect to the powernetwork and the ethernet

• One Lemo cable plus a Lemo to BNC adapter to connect the box t`o the external trigger-in

2.2.2 Arduino Ethernet

Digital I/O pins TX and RX on the Arduino Ethernet are used for the serial communication
with the Venus GPS chip. These are also used in order to program the Arduino via the
USB2Serial adapter. The serial line can, however, only be used by one device at a time and
thus the GPS module has to be unplugged, in order to program the Arduino.
Digital I/O 2 is used to recieve the message NAV from the GPS chip. This pin changes states,

whenever the GPS chip sends out a PPS signal while having a GPS lock on. It is therefore
used to steer the GPS Led. Digital I/O 3 is used in order to veto the PPS on on the NAND
gate. Digital I/Os 6,7,8 are used to steer the Veto, GPS, and Arduino LEDs.
The +3V pin from the Arduino does not supply enough current for the GPS chip (∼90mA),

the antenna (∼50mA), and the LEDs (∼30mA each) together. Therefore the GPS chip and
antenna are attached to the +5V power line with an adequate Diode converter. The LEDs are
powered directly via the digital I/O pins. The NAND gate draws negligible current.

2.2.3 Protoshield

On the protoshield all the components are handplaced and soldered. The top layer is used for
the various SMD capacitors, resistors, etc. The bottom layer is used for routing with soldered
wires.
Arduino Stackable Headers connect the protoshield to the Arduino and are used from above

in order to connect the LEDs. In Fig. 2.5 I show how the Arduino, the GPS module and the
shield �t together.

2.2.4 Venus GPS

The Sparkfun GPS module is connected to the protoshield via normal pin headers. This way
the GPS module can be removed, reinstalled, and replaced in an easy way. It is the small red
module in Fig. 2.3.

2.2.5 USB2SERIAL

In order to program the Arduino Ethernet a serial connection is needed. The GPS module uses
the same communication path and has to be unplugged prior to programming the Arduino.
Then the USB2Seial adapter can be plugged into the serial connection pins of the Arduino.

2 Hardware 13

Together with a USB cable, the serial connection to and power supply from a computer can be
established. The USB2Serial module is unplugged in the standard con�guration. I delivered it
to Watz, who took it to LP. In case we need to program the �rmware of the Arduino, someone
has to physically open the box (no USB feedthrough), unplug the GPS module, and plug the
module with USB cable in. The module is shown in Fig. 2.6

2.3 Signals

Schematically the idea of the FACT GPS module is shown in Fig. 2.7. Every UTC second
the GPS sends a LVTTL signal of 4ms length called Pulse Per Second (PPS). At the same
time, the serial message from the GPS is parsed and interpreted on the Arduino. Then, when
reading UTC second = 59 the Arduino activates the Veto. The Veto is active low, because
later downstream, the signal has to be transformed from a TTL to a NIM pulse. This is done
simply by a reasonable AC coupling together with a voltage divider.
After reading UTC seconds != 59 the Arduino stops the Veto and the PPS signals are let

through.
In the real system, the trigger signal is fed through a ∼40m cable that goes to the FACT

camera. Therefore a delay of the trigger with respect to the real UTC second of about ∼200ns
is introduced. This delay however is small.

14 2.3 Signals

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

A
4

D
ate:

25.10.2013
Sheet of

File:
H

:\gpsm
odule.SchD

oc
D

raw
n B

y:

G
N

D

100uF

C
1

3.3k

R
1

1uF

C
2

100nF

C
3

G
N

D
G

N
D

D
1

D
iode

D
2

D
iode

+5V

G
N

D

A
rdu 2

G
N

D

+5V

150

R
2

200uF

C
4 1uF

C
5

10K

R
3

G
N

D

A
rdu TX

A
rdu R

X
SM

A
 A

N
T

A
rdu 3

EX
T TR

IG

FA
C

T G
PS M

odule

M
ax K

nötig

100nF

C
6

G
N

D

1A
1

1B
2

1Y
3

G
N

D
7

V
C

C
14

N
A

N
D

C
D

74A
C

00

G
N

D

3.3V

TX
0

R
X

0

C
S

C
LK

M
ISO

M
O

SI
SD

A

SC
L

TX
1

TX
2

PPS

N
A

V

G
N

D

V
B

A

ANTENNA

Sparkfun V
enus G

PS

D
3

A
rdu LED

D
4

G
PS LED

D
5

V
ETO

 LED

G
N

D

150
R

4
150
R

5
150
R

6

A
rdu 8

A
rdu 7

A
rdu 6

Institute for P
article P

hysics

F
igu

re
2.4:

T
h
e
F
A
C
T
G
P
S
m
o
d
u
le
sch

em
atic

2 Hardware 15

Figure 2.5: Left: The Arduino + Shield + GPS chip + SMA antenna. Right: Assembled

Figure 2.6: Left: GPS Antenna. Right: USB2Serial module

16 2.3 Signals

0

3

V
o
lt

a
g
e
 i
n
 V

UTC 59s 59s + 4ms 0s 0s + 4ms

PPS

Veto

4ms

0

3

V
o
lt

a
g
e
 i
n
 V

UTC sometime
between 59s - 0s

after 0s

0

3

V
o
lt

a
g
e
 i
n
 V

UTC 59s 59s + 4ms 0s 0s + 4ms

NAND

-0.8

0

V
o
lt

a
g
e
 i
n
 V

UTC 59s 59s + 4ms 0s 0s + 4ms

NIM

Figure 2.7: Sketch of the signals in the module

3 Firmware

3.1 Venus GPS

The Venus GPS chic was delivered with a �rmware set to 9600 baudrate and to send all available
NEMAmessages once every second. This needed to change. In order to program the Venus GPS
�rmware, I downloaded the GPS Viewer / Con�guration Software from the sparkfun website.
The GPS module was connected to the computer via a standard FTDI cable, a prototyping
breadboard, and some wires. The software runs under windows and the needed drivers were
not preinstalled, but could be downloaded from the FTDI website (drivers -> VCP Drivers).

The �rmware was changed to send only GPGGA as Nema message 8 times per second. In
this way, the Arduino has 8 chances per second to enable the Veto. In order to send with this
rate, the baudrate was increased to 115200.

3.2 Arduino

The full FACT GPS Arduino �rmware vers. 1.0 is downloadable from the FACT La Palma
repository:

svn co https://www.fact-project.org/svn/firmware/GpsArduino GpsArduino_firmware

3.2.1 Serial Communication, NEMA Parsing

The Arduino uses a loop() function and a setup() function in order to work. Additionally a
state machine is implemented, that has three states: Veto o�, Veto every full UTC minute and
Veto on.

In the loop() �rst the serial communication is checked. if no byte was recieved via serial the
arduino continues with ethernet. If a client is available, the arduino awaits the full ethernet
message, responds accordingly and, depending on the message, changes its state.

It then continues with the next serial byte. If the full serial message was recieved, the message
is parsed via sscanf:

// check i f r e c i e v ed message i s gpgga compatible
i f (byteGPS == '\n ') { // when '\n ' read (i . e .

// end o f message) ,
// check i f v a r i a b l e s are
// at the c o r r e c t pos . then cont inue

i f (s s c an f (buf , "$GPGGA,%2d%2d%2d.%d,%d.%d,%c ,%d.%d ,
%c ,%d,%d,%d.%d,%d.%d ,M,%d.%d ,M,%7 s \ r \n" ,
&dump,&dump,&seconds ,&dump,&dump,&dump,&cdump ,

18 3.2 Arduino

&dump,&dump,&cdump,&dump,&dump,&dump,&dump,
&dump,&dump,&dump,&dump,&hexdump) != 19)

{
re turn 0 ;
}

bl inkLed (0) ; // message parsed , b l i nk arduino l ed
decideVeto () ; // found the i n t e r e s t i n g part , do something
nemaMsg=buf ; // save message to nema s t r i n g
// remove \ r and \n from the s t r i n g
nemaMsg = nemaMsg . sub s t r i ng (0 , counter −1);

r e turn 0 ; // re turn 0 as we found the i n t e r e s t i n g part
}

The usual �oating point designator %f does not work in Arduinos (because �oating point stu�
takes alot of computing power) and therefore a structure such as %2d.%d has to be used. In
total 19 numbers are compared (all but the seconds are dumped) and only if all are sucessfully
parsed, the Arduino decides to activate the Veto or not.

3.2.2 Ethernet

The arduino starts an ethernet server on port 23 (telnet port). The IP in La Palma is
10.0.100.112, but Watz has adopted our nameserver such that one can access it via �gps�:

>telnet gps

In the following chapter the commands are explained in detail.

3.2.3 Special Remarks

Only after delivery, Dominik made me aware of a mode in which the loop() for the Arduino
would �prefer� in a sense the recieving of the serial NEMA messages, and do so until the
full message was recieved. In the current implementation, this is only true for the ethernet
connection. That means one can saturate the Arduino with ethernet messages and prevent
any interpretation of the serial message. In the real system the ethernet communication should
therefore not be used more often than once per second and not during the critical 59s-0s UTC.

4 Ethernet Server Commandos

4.1 How to Connect

The arduino starts an ethernet server on port 23 (telnet port). Any communication can be
realized with the help of the �socket� library in Python, the telnet program or any other way
of calling the socket() system routine:

fact@gate:~> telnet gps

Trying 10.0.100.112...

Connected to gps.fact.local.

Escape character is '^]'.

get_nema

$GPGGA,133616.405,2845.7026,N,01753.4691,W,1,10,1.1,2197.3,M,34.8,M,,0000*7D

quit

Connection closed by foreign host.

fact@gate:~>

Listing 4.1: A small Python client

import socke t
import sys
from time import s l e e p

#good o ld wh i l e t rue

while True :

sock = socket . socket (socke t .AF_INET, socke t .SOCK_STREAM)
t h i s i s the arduino ip in the e th network

se rver_adres s = (' 1 0 . 0 . 1 00 . 1 12 ' ,23)

sock . connect (se rver_adres s)
the command to ge t the answer from the arduino

sock . send (' get_nema\ r \n ')

s l e e p (1000 . /1000 .)
save the r e c i e v i n g message

message = sock . recv (10000)

s l e e p (1 . / 1 0 0 0 .)

20 4.3 Limitations

print (message)
s l e e p (5 .)

sock . c l o s e ()

4.2 Commandos

There are six commandos that can be issued by the client to the Arduino server. The �rst
is help. This prints an explanation of all the other �ve commandos: get_nema, veto_o�,
veto_on, veto_60, quit:

fact@gate:~> telnet gps

Trying 10.0.100.112...

Connected to gps.fact.local.

Escape character is '^]'.

help

-- GPS Clock Arduino Help --

---- Autor: Max Knoetig ----

--- mknoetig@phys.ethz.ch --

get_nema : get the last complete NEMA message

veto_off : switch off veto

veto_on : switch on veto

veto_60 : veto every pps to the full GPS UTC minute

quit : close the connection

Please note that the commando veto_on activates the Veto and therefore disables the FACT
GPS module. In return veto_o� lets every PPS UTC trigger through.

4.3 Limitations

Remember: in the real system the ethernet communication should not be used more often
than once per second and not during the critical 59s-0s UTC. The details are explained in the
previous chapter about the �rmware.

5 Lab Tests

5.1 Raw PPS from Venus GPS

The �rst test performed was to see what the PPS signal looks like.
Test set-up: Sparkfun Venus GPS, DC power supplied by voltage source. Antenna attached

and hold outside of the window. The PPS signal from the Sparkfun module PPS pin was fed
via a Lemo cable into a Tek digital scope with 50Ω termination. The serial communication was
observed with a probe.
Test �ndings (Fig. 5.1): The PPS signal comes after the Venus chip has a lock on the GPS

satellites. This can take from seconds up to minutes, depending on the view of the sky. The
PPS signals do have a delay of 1s inbetween, as measured by the scope. They have a height
of ∼-1.3V at 50Ω, good for our purposes (NIM ∼-0.8V at 50Ω usually). The serial connection
was visible on the scope as well (Fig. 5.1)

Figure 5.1: The test setup.

22 5.4 veto_60

5.2 NAND @ DC-Voltage Source

Test set-up: the same setup as before, but in addition, the Veto pin was manually activated
with a voltage source for one second.
Test �ndings (Fig. 5.2): NAND works just �ne and the PPS is vetoed.

Figure 5.2: The vetoed PPS.

5.3 44m Lemo Cable Transmission

Test set-up: In order to test if the FACT GPS module can feed the FTM through 40m of
coaxial cable, the signal was fed into a 22m long Lemo cable from the old L3 experiment, then
fed into another 22m segment and then measured at the oscilloscope. in parallel the signal
was directly fed into the scope via a T-Lemo element (without 16Ω impedance matching in all
directions). The GPS module was tested when it was still unprotected by a plastic housing,
but fully functional.
Test �ndings (Fig. 5.3): The initial �NIM� pulse is about -1.3V deep, 4ms long and has rising

edges faster than 5ns (bandwidth limit by scope). After travelling through 44m of cable the
pulse the pulse has lost less than 10% of voltage. The rising edge is now ∼50ns long. Both
numbers are �ne for us.

5.4 veto_60

Test set-up: Bare fully set-up FACT GPS module with antenna outside of the window and
GPS lock, attached to a scope. The exact UTC second was measured by observing an accurate
web clock. The state of the arduino was set by default to veto_60.
Test �ndings (Fig. 5.4): Every PPS triggered and every full UTC minute was vetoed by the

arduino.

5 Lab Tests 23

Figure 5.3: Top: The signals before and after the 44m cable. Bottom: Test set-up in the ETHZ
basement next to a naked working sector of the FACT camera electronics

24 5.6 Ethernet Commandos

Figure 5.4: The �tooth gap�. Please note the time on the laptop: 2 seconds after the full UTC
minute. The scope shows 2 pulses to the tooth gap.

5.5 FTM Trigger In: Ext1 & Ext2

Test set-up: Full scale test of everything, including the FTM EXT1 & EXT2 inputs, the FACT
GPS module, 44m of coax cable, and FACT++.
Test �ndings (Fig. 5.5): Everything worked as expected. FACT++ FTM tab showed a

stable rate of 1Hz.

5.6 Ethernet Commandos

Test set-up: The assembled FACT GPS box was tested to work with the ethernet commands.
At the same time, the LEDs were tested. A scope was used to verify the pulses were vetoed
correctly.
Test �ndings: All commands worked �ne. get_nema sends the last nema message, but the

veto got stuck when trying to request it faster than ten times per second. The help command
works, the quit command works. The veto_o� and the veto_on commands work and switch
on and o� the Veto LED. The Arduino LED is blinking with a frequency of 4Hz, as expected.
The GPS LED is ON in the beginning. After some time it blinks with 0.5Hz, as expected when
the chip gets a lock on the satellites. The veto_60 command works as well, as veri�ed by the
same web clock like above.

5 Lab Tests 25

Figure 5.5: FACT++ FTM tab showing a stable rate of 1Hz. The large spikes to 0Hz are
arti�cial because of switching the veto o� and on. One spike seems to indicate
2Hz followed by 0Hz. This can be explained as two PPS measured in the same
integration window.

6 Attachments

6.1 External Schematics

The external schematics are stored in the svn on La Palma, together with the �rmware and
this document:

svn co https://www.fact-project.org/svn/firmware/GpsArduino GpsArduino_firmware

6.2 Package List La Palma

This �ew to La Palma:

28 6.3 Set-up Instructions for Watz

6.3 Set-up Instructions for Watz

6 Attachments 29

Bibliography

[1] Aleksic, J. et al. Phase-resolved energy spectra of the crab pulsar in the range of 50-400
gev measured with the magic telescopes. Astronomy and Astrophysics 540, 69 (2012).

[2] Aliu, E. et al. Detection of pulsed gamma rays above 100 gev from the crab pulsar. Science
334, 69�72 (2011).

	Introduction
	Physics Motivation
	Timing Problem Solution

	Hardware
	Box Outside
	Connections
	LEDs

	Box inside
	Overview Schematic
	Arduino Ethernet
	Protoshield
	Venus GPS
	USB2SERIAL

	Signals

	Firmware
	Venus GPS
	Arduino
	Serial Communication, NEMA Parsing
	Ethernet
	Special Remarks

	Ethernet Server Commandos
	How to Connect
	Commandos
	Limitations

	Lab Tests
	Raw PPS from Venus GPS
	NAND @ DC-Voltage Source
	44m Lemo Cable Transmission
	veto_60
	FTM Trigger In: Ext1 & Ext2
	Ethernet Commandos

	Attachments
	External Schematics
	Package List La Palma
	Set-up Instructions for Watz

