
The DRS DAQ Program for CTX

S. Commichau

<sebastian.commichau@phys.ethz.ch>

Institute for Particle Physics

ETH Zurich

November 2008

CONTENTS CONTENTS

Contents

1 Introduction 2

2 The Domino Ring Sampler Readout 2

3 Requirements 2

4 Installation 3

5 Running the Program 3
5.1 Available Commands . 3
5.2 Utility Programs . 6

6 Using ROOT to read Raw Data 7

7 What remains to be done. . . 9

8 Troubleshooting 10

A A Template Configuration File 11

B Sample Output 12

C The Help Menu 13

D A Sample Log File 14

E The Raw Data Format 15

F List of Files 16

1

3 REQUIREMENTS

1 Introduction

This note briefly describes the installation and the main features of the DRS DAQ program [1].

2 The Domino Ring Sampler Readout

The Domino Ring Sampler (DRS) is an analog sampling chip fabricated in a 0.25µm CMOS
process [2, 3]. The chip provides 8(10) input channels with an input voltage limit of 2V (0.1 V -
1.1 V linear input range), each of which is followed by an array of 1024 capacitive sampling cells
(arranged in a ring-buffer). The capacitive sampling cells form a so-called switched capacitor
array (SCA) and belong to the analog part of the chip. The digital part of the chip is responsible
for digital control and multiplexing. The sampling frequency is generated on the chip itself (with
a series of inverters) and ranges from 0.5 GHz to 3 GHz. Once an analog signal is sampled and a
trigger occurs, the contents of the sampling cells are frozen and the SCA is read out at 40 MHz
with an external 12 bit flash analog-to-digital (FADC) converter. The readout speed is limited
by the fact that all 1024 cells have to be transferred from the SCA. For the next DRS generation
(version 3/4) it is foreseen to reduce the readout time by selecting a region of interest before
readout.
The DAQ system at the electronics workshop (Institute for Particle Physics, ETH Zurich) is
based on a 32-channel VME board. The board houses two 16(20)-channel mezzanine cards,
each of which contains two DRS chips (version 2) and supporting electronics. The VME board
contains FPGAs for generating the readout sequence and the storage of the digitized data.
Further information can be found elsewhere [2]. Results on performance measurements of the
DRS chip (version 2) can be found in [4].

3 Requirements

With the DAQ program it is possible to modify the DRS registers, to transfer the data from the
32-channel VME board and to store it on a hard disk.

• The DAQ program requires DRS version 2 or 3 and version 3 of the DRS VME board
[2, 3]. Furthermore, the program works with the Concurrent Technologies (CT) VME
controller VP315/022-RC [5] and the Struck VME controller SIS 3100. Both controllers
have a VME-64 interface supporting
A32/A24/A16/D64/D32/D16/D8(E0), MBLT. The SIS 3100 controller supports the 2eVME
protocol, which is much faster than the other transfer protocols.

• The program has to be compiled for each controller. Depending on the controller different
objects/libraries are required and linked to the executable. To select one of the above
controllers the flag VMECTRL (in Makefile.general) must be set either to -DCT VME or
-DSTRUCK VME.
Note: in case of the CT VME controller the driver and library (vme rcc) so far only
supports the Tundra Universe PCI ↔ VMEbus ASIC. As this chip does not support
2eVME & 2eSST there is no 2eXXX support in the library (vme rcc) either [7].

• All shared libraries and drivers which are needed by the CT and the Struck controller are
included in this version of the DAQ program (the directory ./VME/ contains everything).

• The Linux kernel version required for the CT VME driver is 2.6.9-67.0.7.

• ...

2

5 RUNNING THE PROGRAM

4 Installation

The following steps are necessary to install the DRS DAQ program:

1. First of all make sure that the VME driver is properly installed. The CT driver was
already installed, so I cannot comment on this, but in case of the Struck controller do the
following (requires super user privileges!):

• Go to the directory $HOME/drsdaq/VME/struck/sis1100/V2.02/dev/pci/

• Enter sudo ./load module

• To check if the driver has been installed type dmesg | grep sis1100

• Go to the directory /tmp/ and enter ln -s sis1100 00remote sis1100

2. Extract the gzipped tar ball: tar xvfz drsdaq VN DDMMYYYY.tgz.

3. Go to the main directory: cd drsdaq.

4. Select the current VME controller by chosing the correct flag in Makefile.general: the
flag VMECTRL must be set to -DCT VME in case of the CT VME controller or to -DSTRUCK VME

in case of the Struck controller.

5. Type make in the main directory.

6. Edit the default configuration file DRSDAQ.conf: the variables LogPath and RawDataPath

must be set properly.

7. Create the directory corresponding to the RawDataPath, as defined in DRSDAQ.conf.

5 Running the Program

• To run the program, type ./drsdaq. If the VME driver is appropriate and a DRS VME
board has been found you will get an output as shown in appendix B.

• The program automatically scans the entire VME crate for DRS boards, assuming ge-
ographic addressing. Geographic addressing allows the controller to identify the slot in
which the DRS board is located.

• Loading a custom configuration file: a custom configuration file can be passed as command
line argument to the DAQ program:

./drsdaq -c <ConfigFile>

The configuration file is updated at program-exit time (see next section).

• Upon every startup a log file will be generated. It will be stored in the directory specified
by RawDataPath (see appendix D).

5.1 Available Commands

<ARG> = mandatory argument

[ARG] = optional argument

• ba(sh): start bash. Type exit to return to the DAQ program.

• b(oard): Select CMC boards from VME crate:

3

5.1 Available Commands 5 RUNNING THE PROGRAM

board <i>, <i> [j], <all>

select CMC board i, boards i-j, all boards.

• ca(libration): Before data acquisition an internal calibration is required: to do this, enter

ca(lib) [target dir] <trigger frequency> <calibration frequency> [GHz].

If no target directory (first argument) is provided the program will use the default directory
(recommended). The program generates calibration files for each CMC Board. These files
can only be used at the DRS sampling frequency which has been set for their generation.

• (cl)ear: clear screen.

• cc(lient): The command

cc(lient) <name>

sets the machine name of the CC client to name. The DAQ configuration file is updated
accordingly at program-exit time.

• c(onfig): Print DAQ configuration (read from configuration file (DRSDAQ.conf)).

• de(layed): Modify delayed start:

de(layed) <0|1>,

0 disables and 1 enables delayed start.

• d(isk): Print disk space in mega bytes.

• f(requency): To set the DRS sampling frequency enter

f(requency) <GHz> [1]

The first argument denotes the sampling frequency in GHz, the second one is optional and
specifies if frequency regulation should be used or not.

• h(elp): To print all available commands (see appendix C) type

h(elp)

• inf(o): Show status of DAQ and connected DRS boards.

• le(d): Turn LED on/off:

le(d) <on|off>.

• m(ode): Set DRS mode

m(ode) <0|1>,

to single shot (0) or continuous (1).

• (p)ort: The command

4

5 RUNNING THE PROGRAM 5.1 Available Commands

(p)ort <port>

changes the port to be used by the CC to port. The most recent value is written to the
DAQ configuration file (DRSDAQ.conf).

• q(uit)/e(xit): Exit the program.

• r(amtest): RAM integrity and speed test.

• rea(d): Read data from DRS board:

r(ead) <i> <ch> [0|1],

reads data from board i, channel ch with (1) or without calibration (0). The data will be
printed to the standard output. If data is read without calibration the unit is ADC counts
otherwise millivolts.

• rm(ode): Set DRS readout mode:

rm(ode) <0|1>.

To start the readout from stop position set it to 0 and to start the readout from first bin
choose 1.

• ro(ot): Start ROOT (if installed).

• sc(an): Search for DRS boards in the VME crate.

• se(rial): Set serial number of DRS boards (experts only):

se(rial) <i> <n>,

changes serial number of board i to n.

• st(art): Start DRS wave.

• sto(p): Stop DRS wave (issue software trigger).

• t(ake): To acquire a pedestal, calibration (not yet implemented) or data run at the current
sampling frequency, type

t(ake) [P|C|D] [EVENTS] [RUNNUMBER] [SOURCE]

If no argument is provided a data run is started. The first argument specifies the run
type. The second argument (EVENTS) specifies the number of events to be taken, whereas
the third denotes the run number. Both the number of events and the run number are
read from the DAQ configuration file and automatically incremented for the next run. On
program exit the current values are written to the configuration file.
The raw files are stored in the directory

RawDataPath/YYYYMMDD/

The naming convention of the raw files follows to some extend the one used in the MAGIC
experiment:

YYYYMMDD_RUNNUMBER_SOURCE_TYPE.raw

5

5.2 Utility Programs 5 RUNNING THE PROGRAM

The format of the raw data can be inferred from RawDataCTX.cc/h (see appendix F).
The program inspectrawfile can be used to read the raw data. It may also serve as a
template to develop a program for further analysis of raw data.
In case of a data and calibration run the program waits for an external (hardware) trigger.
The external trigger must be provided as a TTL signal (input signal: < 0.8V = low level,
> 2.0V = high level) to the USER connector front panel: pin 2 (left), GND; pin 1 (right),
trigger input. The signal should be terminated with 50Ω at the VPC input and it should
last about 100 ns [3]. In case of a pedestal run the program issues software triggers to
continuously stop and re-start the DRS.

• te(st(2e)blt32|64): Do benchmark test, i.e. perform N D32 or D64 DMA read operations.
Node: the 2eVME mode only works with the Struck VME controller.

te(st(2e)blt32|64) [N]

Some statistics are shown after completion.

• ti(me)/da(te): Print current time and date.

• tr(ig): Change between hardware and software trigger:

tr(ig) <0|1>,

0 disables and 1 enables the (external) hardware trigger.

• u(ptime): Print DAQ uptime (h:m:s).

• w(mode): Set DRS wave mode:

w(mode) <0|1>.

To keep the DRS wave running during readout set it to 1 and to stop it during readout
choose 1.

• . . .

All commands listed beforehand can also be sent through a TCP/IP connection to the DAQ
program (see next section). The machine name of the client and the port to be used for the
connection are defined in DRSDAQ.conf. The DAQ program continuously tries to connect to the
CC client using the port which was either set by hand or read from DRSDAQ.conf.

5.2 Utility Programs

Two simple utility programs which are able to write a dummy file and to read raw data can be
found in the subdirectory utilities. The program writerawfile writes a certain number of
events (max. 500 events) to a file according to the current raw data format. Usage:

./writerawfile <outfile> [events]

To read the data - either raw data from the DAQ program or from the program writerawfile

- one can use the program inspectrawfile <rawfile>. Usage:

./writerawfile <rawfile>

Another program, called remotecontrol, represents a simple command line interface to issue
all commands listed in the previous section to the DAQ program via TCP/IP. Usage:

./remotecontrol <server name> <port>

For the server name and port configuration see e.g. DRSDAQ.conf.
Note: all executables mentioned beforehand are not compiled when the main DAQ program is
compiled and linked, i.e. type make in the directory utilities.

6

6 USING ROOT TO READ RAW DATA

6 Using ROOT to read Raw Data

The following steps are necessary to use ROOT for reading binary raw data produced by the
DAQ program:

1. Make sure that ROOT [6] is installed. ROOT version 5.18/00 is not necessary but was
used for all tests until now.

2. Assure that the DRS DAQ program is properly installed: a shared object called
RawDataCTX.so (in $HOME/drsdaq/DAQ/) is generated, which is mandatory to read binary
raw files with ROOT.

3. If the location of the library has changed go to the directory called root. Edit rootlogon.C
such that ROOT can find the shared object, i.e. change the lines

const TString path = "/cpp/drsdaq2/DAQ/";

const TString lib = "RawDataCTX.so";

accrodingly.

4. A template macro called readraw template.C is provided. The location of the header
files

#include "/home/scommichau/drsdaq/DAQ/RawDataCTX.h"

#include "/home/scommichau/drsdaq/DAQ/CTXTypes.h"

has to be changed accordingly to be able to run the macro. You also have to change the
macro such that the raw data will be found. Once this is done the macro should work.
Note: the macro must (!) be compiled, i.e. start ROOT and type

.x readraw_template.C++

5. You may want to use ROOT to read raw data from everywhere: edit the file
copy to home as.rootrc (if needed) and copy it to $HOME/.rootrc

7

6 USING ROOT TO READ RAW DATA

Time slice [1.0 ns/slice]
0 128 256 384 512 640 768 896 1024

A
m

p
lit

u
d

e
[a

.u
.]

0

200

400

600

800

1000 Board 0, Chip 0
Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
Channel 8
Channel 9

Time slice [1.0 ns/slice]
0 128 256 384 512 640 768 896 1024

A
m

p
lit

u
d

e
[a

.u
.]

0

200

400

600

800

1000 Board 1, Chip 0
Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
Channel 8
Channel 9

Figure 1: Digitised waveforms from the DRS 2 chip. The trigger signal in channel #8 is used
as a reference to rotate the waveform.

8

7 WHAT REMAINS TO BE DONE. . .

7 What remains to be done. . .

? Transferrate achieved with the CT VME controller: only ∼ 13.5MBytes/s with D64
(MBLT) read and ∼ 7MBytes/s with D32 read are achieved, which results in a trigger
rate well below 100 Hz - if all four mezzanine cards are used.

• Result from D32 read:

**

Mode: VMEbus A32/D32 DMA read [64 kB]

Contiguous buffer:

VMEbus address: 0X02A40000

Physical address: 0X064B0000

Virtual address: 0XB5E3F000

1000 BLT(s) finished...

0 errors... success!

Duration: 8.725 s

Rate: 7.163 MB/s

**

• Result from D64 read:

**

Mode: VMEbus A32/D64 DMA read [64 kB]

Contiguous buffer:

VMEbus address: 0X02A40000

Physical address: 0X18900000

Virtual address: 0XB665F000

1000 BLT(s) finished...

0 errors... success!

Duration: 4.611 s

Rate: 13.556 MB/s

**

Some of the VMEbus signals that are used during (DMA) read/write cycles are shown in
figure 2. Yellow: DTACK* (data transfer acknowledge); pink: AS* (address strobe); turqoise:
DS* (data strobe)). The star (*) indicates that the signal is active if low. The slave (DRS
VME board) uses the DTACK signal for two purposes: directly after AS being inserted to
acknowledge the address; after each assertion of DS to acknowledge data. It can be seen
that the response of the slave is in the order of 400 ns, which limits the maximum data
transfer rate to ∼ 13.5MBytes/s, i.e. contrary to 2eXXX transfers D32/64 DMA transfers
are handled inefficiently by the DRS VME board [3]. To speed up the transferrate we could
use the Struck controller (requires changes in DRS.cc/h, see section F), which supports
2eXXX modes. The 2eXXX mode allows for a transferrate O(250MBytes/s).

(a) D32 DMA read. (b) D64 DMA (MBLT) read.

Figure 2: Some of the VMEbus signals that are used during (DMA) read/write cycles: example
for a D32 DMA read (left) and for a D64 DMA read operation (right). Yellow: DTACK* (data
transfer acknowledge); pink: AS* (address strobe); turqoise: DS* (data strobe)).

9

8 TROUBLESHOOTING

? The maximum transferrate achieved with the Struck VME controller is ∼ 80MB/s (with
the 2eVME protocol):

**

Mode: VMEbus A32/D64 2eVME read [64 kB]

1000 BLT(s) finished...

0 errors... success!

Duration: 0.797 s

Rate: 78.443 MB/s

**

8 Troubleshooting

• You might get the following error when trying to run the DAQ program:

[eth-vme02] > error: 0x20c => major: Error 12 in package 2 => VMEbus

driver/library for the RCC: Error from file operation (open/close) VME

open not successful.

This error maybe due to a mismatch between kernel and VME driver version: the current
VME driver requires kernel version 2.6.9-67.0.7. Use the command uname -r to find
out about the current kernel version and compare this with the version of the kernel mod-
ules located in (/home/$USER/drsdaq/atlas/driver/). Load the correct kernel version
at startup, and, if necessary, edit /etc/grub.conf to automatically use the required kernel
version. Check the directory /boot if the right kernel version is available.
In order to disable the YUM automatic update (to avoid the problem of being automati-
cally updated to another kernel version) do the following:

[eth-vme02] > service yum-autoupdate stop

[eth-vme02] > chkconfig --del yum-autoupdate

In order to enable the automatic update system, use the following commands:

[eth-vme02] > chkconfig --add yum-autoupdate

[eth-vme02] > service yum-autoupdate start

• . . .

10

A A TEMPLATE CONFIGURATION FILE

A A Template Configuration File

Configuration file for the DRS DAQ V1, 2008 10 06, 13:53:11

LogPath /home/scommichau/cpp/drsdaq/log/

RawDataPath /home/scommichau/data/

NumEventsDatRun 1

NumEventsCalRun 1000

NumEventsPedRun 100

RunNumber 613

RotateWave 0

FirstSample 0

LastSample 512

MinDiskSpaceMB 1000

MaxFileSizeB 1000000000

CCPort 3000

CCClient ihp-pc29.ethz.ch

FirstVMESlot 1

LastVMESlot 7

11

B SAMPLE OUTPUT

B Sample Output

********************** DRS readout built Oct 3 2008, 16:51:21 ***********************

Opening file: DRSDAQ.conf

VME connection opened

CMEM opened

DAQ> found mezz. board 0 on VME slot 3 upper, serial #122, firmware revision 5268

DAQ> found mezz. board 1 on VME slot 3 lower, serial #123, firmware revision 5268

DAQ> found mezz. board 2 on VME slot 5 upper, serial #306, firmware revision 5268

DAQ> found mezz. board 3 on VME slot 5 lower, serial #213, firmware revision 5268

DAQ|B0-3> initialization of board 0 done

DAQ|B0-3> initialization of board 1 done

DAQ|B0-3> initialization of board 2 done

DAQ|B0-3> initialization of board 3 done

DAQ|B0-3> f 1

DAQ|B0-3> setting frequency without regulation:

CHIP #0, iter 0: 0.80000(20971) 0.84128 +1040

CHIP #0, iter 1: 0.83968(22011) 0.99362 +42

CHIP #0, iter 2: 0.84128(22053) 0.99972

CHIP #1, iter 0: 0.80000(20971) 0.91116 +582

CHIP #1, iter 1: 0.82221(21553) 1.00151 -9

CHIP #1, iter 2: 0.82183(21544) 1.00009

DAQ|B0-3> domino wave of board 0 is running at 1.000 GHz

CHIP #0, iter 0: 0.80000(20971) 0.92417 +497

CHIP #0, iter 1: 0.81896(21468) 1.00267 -17

CHIP #0, iter 2: 0.81829(21451) 0.99995

CHIP #1, iter 0: 0.80000(20971) 0.83174 +1103

CHIP #1, iter 1: 0.84207(22074) 0.99281 +47

CHIP #1, iter 2: 0.84386(22121) 0.99965

DAQ|B0-3> domino wave of board 1 is running at 1.000 GHz

CHIP #0, iter 0: 0.80000(20971) 0.90164 +645

CHIP #0, iter 1: 0.82459(21616) 1.00002

CHIP #1, iter 0: 0.80000(20971) 0.89356 +698

CHIP #1, iter 1: 0.82661(21669) 0.99720 +18

CHIP #1, iter 2: 0.82731(21687) 0.99976

DAQ|B0-3> domino wave of board 2 is running at 1.000 GHz

CHIP #0, iter 0: 0.80000(20971) 0.91385 +565

CHIP #0, iter 1: 0.82154(21536) 1.00297 -18

CHIP #0, iter 2: 0.82079(21516) 0.99965

CHIP #1, iter 0: 0.80000(20971) 0.91513 +556

CHIP #1, iter 1: 0.82122(21527) 1.00534 -34

CHIP #1, iter 2: 0.81988(21492) 0.99972

DAQ|B0-3> domino wave of board 3 is running at 1.000 GHz

DAQ|B0-3>

12

C THE HELP MENU

C The Help Menu

<ARG> = mandatory argument

[ARG] = optional argument

** HELP **

board <i>, <i> [j], <all> Address board i, boards i-j, all boards

calib [DIR] <T_FREQ> [C_FREQ] Response calibration (frequencies in GHz)

cclient <name> Set machine name of the CC client to <name>

clear Clear screen

config Print DAQ configuration

del <0|1> Switch delayed start on <1>|off <0>

disk Show disk space in MB

freq <GHz> Set DRS sampling frequency

help Print help

info Show DAQ status information

led <ON|OFF> Turn LED on|off

mode <0|1> Set DRS mode: 0 = single shot, 1 = continuous

port <port> Set port to be used by the CC to <port>

quit Exit program

ramtest RAM integrity and speed test

read <i> <ch> [0|1] Read data from board <i>, <ch>=0...9 [W/O|W] cal.

rmode <0|1> Set DRS readout mode

root Start ROOT

serial <i> <n> Set serial # of board <i> to <n> (experts only)

scan Scan for boards

start Start domino wave

stop Issue soft trigger and stop DAQ

take [P|C|D] [EVENTS] [RUN#] [SOURCE] Start DAQ, take Data, Ped. or Cal. run

test[2e]blt[32|64] [N] Test VMEbus [2edge] BLT D32|D64 (read)

time Prints current date and time

trig <0|1> Hardware trigger on <1>|off (0)

wmode <0|1> Set DRS wave mode

uptime Get DAQ uptime [h:m:s]

**

13

D A SAMPLE LOG FILE

D A Sample Log File

[2008:07:08:12:46:03] start logfile

DRS DAQ configuration:

LogPath: /home/scommichau/cpp/drsdaq/log/

RawDataPath: /home/scommichau/data/

NumEventsDatRun: 1

NumEventsCalRun: 1000

NumEventsPedRun: 100

RunNumber: 613

RotateWave: 0

FirstSample: 0

LastSample: 512

MinDiskSpaceMB: 1000

MaxFileSizeB: 1000000000

CCPort: 3000

CCClient: ihp-pc29.ethz.ch

FirstVMESlot: 1

LastVMESlot: 7

[2008:07:08:12:46:03] DAQ> found mezz. board 0 on VME slot 3 upper, serial #123, firmware revision 5268

[2008:07:08:12:46:03] DAQ> found mezz. board 1 on VME slot 3 lower, serial #122, firmware revision 5268

[2008:07:08:12:46:03] DAQ|B0-1> initialization of board 0 done

[2008:07:08:12:46:03] DAQ|B0-1> initialization of board 1 done

[2008:07:08:12:46:18] USER> info

*************************************** DAQ STATUS ***************************************

DAQ: stopped

Run number: 613

Run type: data

Event: 0

Requested events per data run: 1

Requested events per ped. run: 100

Requested events per cal. run: 1000

Storage directory: /home/scommichau/data/

Disk space (/home/scommichau/data/) [MB]: 60104

CC state: disconnected

CC client: ihp-pc29.ethz.ch

CC port: 3000

Total number of CMC boards: 2

Active CMC boards: all

Frequency of board 0 set: yes

Frequency of board 1 set: no

*************************************** DRS STATUS ***************************************

Mezz. board index: 0

Slot: 3 upper

Chip version: DRS2

Board version: 3

Serial number: 123

Firmware revision: 5268

Temperature: 28.6 C

Status reg.: 0X00000000

Control reg.: 0X00020000

DMODE circular

Trigger bus: 0X00000000

Domino wave stopped

Mezz. board index: 1

Slot: 3 lower

Chip version: DRS2

Board version: 3

Serial number: 122

Firmware revision: 5268

Temperature: 30.7 C

Status reg.: 0X00000000

Control reg.: 0X00020000

DMODE circular

Trigger bus: 0X00000000

Domino wave stopped

**

[2008:07:08:12:46:28] CC> date

[2008:07:08:12:46:28] DAQ|B0-1> current date/time is: Tue Jul 8 12:46:28 2008

[2008:07:08:12:46:34] USER> q

[2008:07:08:12:46:35] end logfile

14

E THE RAW DATA FORMAT

E The Raw Data Format

The raw data is written like RunHeader, EventHeader 1, CMCData 11, CMCData 21,. . . CMCData
N1, EventHeader 2, CMCData 12, CMCData 22,. . . CMCData N2,. . .

• Run Header:

// size in bytes:

I8 Name[5]; // name of the structure 5

I8 DAQVersion[5]; // 10

I8 Source[16]; // 26

I8 Type[2]; // run type (P,C,D) 28

I8 RunNumber[32]; // 60 60

U16 StartYear; // 62

U8 StartMonth; // 63

U8 StartDay; // 64

U8 StartHour; // 65

U8 StartMinute; // 66

U8 StartSecond; // 67 7

U16 EndYear; // 69

U8 EndMonth; // 70

U8 EndDay; // 71

U8 EndHour; // 72

U8 EndMinute; // 73

U8 EndSecond; // 74 7

F32 SourceRA; // 78

F32 SourceDEC; // 82

F32 TelescopeRA; // 86

F32 TelescopeDEC; // 90 16

U32 Events; // number of events in the run 94

U32 NCMCBoards; // number of used boards 98

I32 Samples; // number of samples (out of 1024) 102

I32 Offset; // offset from first sample (<1024) 106 16

F32 NomFreq[MAX_NUM_CMCBOARDS]; // nominal sampling frequency [GHz] 146

F32 BoardTemp[MAX_NUM_CMCBOARDS]; // board temperature [C] 186 80

• Event Header:

// size in bytes:

I8 Name[5]; // name of the structure 5

U32 EventNumber; // 9

F32 TimeSec; // [s] event time stamp, ms precision 13

U16 TriggerType; // 15

• CMC Data:

// size in bytes:

F32 WaveForm[MAX_NUM_CHIPS][MAX_NUM_CHANNELS][MAX_NUM_SAMPLES]; // 81920 = 4*2*10*1024

15

F LIST OF FILES

F List of Files

The following directories and files are included, among others:

Directory File Task/Content

drsdaq drsdaq.cpp Main DAQ program, does global initialization, starts threads for
control and data acquisition.

drsdaq DRSDAQ.conf Default configuration file, loaded at program startup.
drsdaq Makefile Main makefile for the DRS DAQ.
drsdaq Makefile.general General definitions for all makefiles.
drsdaq Makefile.rules Rules for all makefiles.

DRS DRS.cc/h Main DRS class, library functions for the VME DRS board and
CMC cards. Requires DRS version 2 or 3 and VME board ver-
sion 3 [2, 3]. Note: the classes only work with the Concurrent
Technologies VME single board computer VP 315 [5].

DRS mxml.c/h Midas XML library (S. Ritt).
DRS strlcpy.c/h Contains strlcpy and strlcat which are versions of strcpy and

strcat, but which avoid buffer overflows (S. Ritt).
DRS Makefile Local makefile (follows global rules).

DAQ DAQ.cc/h Main DAQ class (thread).
DAQ DAQReadout.cc/h Interface between user and DAQ.
DAQ DAQStatus.cc/h Houses DAQ and DRS status information.
DAQ DAQConfig.cc/h Houses DAQ configuration.
DAQ ConsoleCommand.cc/h Handle user input (thread).
DAQ CCCommand.cc/h Handle Central Control input (thread).
DAQ CheckDisk.cc/h Checks continuously remaining disk space (thread).
DAQ Log.cc/h Logging utility.
DAQ ReadCard.cc/h Parse DAQ configuration file (F. Goebel).
DAQ Utilities.cc/h Utility routines.
DAQ socklib.c/h TCP socket interface.
DAQ Makefile Local makefile (follows global rules).

utilities writerawfile.cpp Test program writing raw files.
utilities inspectrawfile.cpp Test program reading raw files.
utilities remotecontrol.cpp Test program providing a simple network interface to the DAQ

program.
utilities Makefile Local makefile.

VME atlas Shared libraries, drivers and debug tools [7] for the CT VME
controller.

VME struck Shared libraries and drivers for the Struck VME controller.

root . . . ROOT [6] configuration files and template macro to read raw data.

calib . . . Default target directory for the response calibration files.

log . . . Target directory for the log files. It is specified in the default DAQ
configuration file.

doc manual.ps/pdf This documentation.

16

REFERENCES REFERENCES

References

[1] Latest version of the DRS DAQ program and documentation:
http://ihp-pw1.ethz.ch/commichau/.CTX/daq/

[2] DRS documentation web pages, https://midas.psi.ch/drs/.

[3] stefan.ritt@psi.ch, boris.keil@psi.ch

[4] M. Schneebeli, The drift chambers of the MEG experiment and measurement of the ρ-
parameter in the Michel spectrum of the muon decay, DISS. ETH No. 17719, 2008.

[5] Concurrent Technologies web pages, http://www.gocct.com/sheets/vp315022rc.htm.

[6] ROOT web pages, http://root.cern.ch.

[7] VMEbus Application Program Interface, ATLAS Internal Note ATL-D-ES-0004, V 1.7, 14
June 2007.

17

