| | 1 | |
| | 2 | == Writing Input Files == |
| | 3 | |
| | 4 | {{{#!Spoiler |
| | 5 | {{{#!cpp |
| | 6 | #include <iostream> |
| | 7 | #include <iomanip> |
| | 8 | #include <fstream> |
| | 9 | |
| | 10 | #include <TMath.h> |
| | 11 | #include <TChain.h> |
| | 12 | |
| | 13 | using namespace std; |
| | 14 | |
| | 15 | void writesim() |
| | 16 | { |
| | 17 | // Create chain for the tree Result |
| | 18 | // This is just easier than using TFile/TTree |
| | 19 | TChain c("Result"); |
| | 20 | |
| | 21 | // Add the input file to the |
| | 22 | c.AddFile("simulation.root"); |
| | 23 | |
| | 24 | // Define variables for all leaves to be accessed |
| | 25 | // By definition rootifysql writes only doubles |
| | 26 | double X, Y, MeanX, MeanY, Width, Length, CosDelta, SinDelta, |
| | 27 | M3Long, SlopeLong, Leakage1, SlopeSpreadWeighted, Size, |
| | 28 | ConcCore, ConcCOG, NumIslands, NumUsedPixels, Zd, Energy; |
| | 29 | |
| | 30 | // Connect the variables to the cordesponding leaves |
| | 31 | //c.SetBranchAddress("FileId", &FileId); |
| | 32 | //c.SetBranchAddress("EvtNumber", &EvtNumber); |
| | 33 | c.SetBranchAddress("X", &X); |
| | 34 | c.SetBranchAddress("Y", &Y); |
| | 35 | c.SetBranchAddress("MeanX", &MeanX); |
| | 36 | c.SetBranchAddress("MeanY", &MeanY); |
| | 37 | c.SetBranchAddress("Width", &Width); |
| | 38 | c.SetBranchAddress("Length", &Length); |
| | 39 | c.SetBranchAddress("CosDelta", &CosDelta); |
| | 40 | c.SetBranchAddress("SinDelta", &SinDelta); |
| | 41 | c.SetBranchAddress("M3Long", &M3Long); |
| | 42 | c.SetBranchAddress("SlopeLong", &SlopeLong); |
| | 43 | c.SetBranchAddress("Leakage1", &Leakage1); |
| | 44 | c.SetBranchAddress("NumIslands", &NumIslands); |
| | 45 | c.SetBranchAddress("NumUsedPixels", &NumUsedPixels); |
| | 46 | c.SetBranchAddress("Size", &Size); |
| | 47 | c.SetBranchAddress("Zd", &Zd); |
| | 48 | c.SetBranchAddress("Energy", &Energy); |
| | 49 | |
| | 50 | // Set some constants (they could be included in the database |
| | 51 | // in the future) |
| | 52 | double mm2deg = +0.0117193246260285378; |
| | 53 | //double abberation = 1.02; |
| | 54 | |
| | 55 | // -------------------- Source dependent parameter calculation ------------------- |
| | 56 | |
| | 57 | ofstream fout0("sim-train.csv"); // %1 |
| | 58 | ofstream fout1("sim-test.csv"); // %0 |
| | 59 | ofstream fout2("sim-test-cuts.csv"); |
| | 60 | |
| | 61 | fout0 << "Energy Size Zd Dist Disp Slope M3L Leakage Width Length" << endl; |
| | 62 | fout1 << "Energy Size Zd Dist Disp Slope M3L Leakage Width Length" << endl; |
| | 63 | fout2 << "Energy Size Zd Dist Disp Slope M3L Leakage Width Length" << endl; |
| | 64 | |
| | 65 | // Loop over all wobble positions in the camera |
| | 66 | for (int i=0; i<c.GetEntries(); i++) |
| | 67 | { |
| | 68 | // read the i-th event from the file |
| | 69 | c.GetEntry(i); |
| | 70 | |
| | 71 | // First calculate all cuts to speedup the analysis |
| | 72 | double area = TMath::Pi()*Width*Length; |
| | 73 | |
| | 74 | // The abberation correction does increase also Width and Length by 1.02 |
| | 75 | |
| | 76 | int angle = 0; |
| | 77 | |
| | 78 | // -------------------- Source dependent parameter calculation ------------------- |
| | 79 | |
| | 80 | double cr = cos(angle*TMath::DegToRad()); |
| | 81 | double sr = sin(angle*TMath::DegToRad()); |
| | 82 | |
| | 83 | double px = cr*X-sr*Y; |
| | 84 | double py = cr*Y+sr*X; |
| | 85 | |
| | 86 | double dx = MeanX - px*1.022; |
| | 87 | double dy = MeanY - py*1.022; |
| | 88 | |
| | 89 | double norm = sqrt(dx*dx + dy*dy); |
| | 90 | double dist = norm*mm2deg; |
| | 91 | |
| | 92 | double lx = min(max((CosDelta*dy - SinDelta*dx)/norm, -1.), 1.); |
| | 93 | double ly = min(max((CosDelta*dx + SinDelta*dy)/norm, -1.), 1.); |
| | 94 | |
| | 95 | double alpha = asin(lx); |
| | 96 | double sgn = TMath::Sign(1., ly); |
| | 97 | |
| | 98 | // ------------------------------- Application ---------------------------------- |
| | 99 | |
| | 100 | double m3l = M3Long*sgn*mm2deg; |
| | 101 | double slope = SlopeLong*sgn/mm2deg; |
| | 102 | |
| | 103 | // --------------------------------- Analysis ----------------------------------- |
| | 104 | |
| | 105 | //double xi = 1.34723 + 0.15214 *slope + 0.970704*(1-1/(1+8.89826*Leakage1)); |
| | 106 | double xi = 1.340 + 0.0755*slope + 1.67972*(1-1/(1+4.86232*Leakage1)); |
| | 107 | |
| | 108 | double sign1 = m3l+0.07; |
| | 109 | double sign2 = (dist-0.5)*7.2-slope; |
| | 110 | |
| | 111 | double disp = (sign1<0 || sign2<0 ? -xi : xi)*(1-Width/Length); |
| | 112 | |
| | 113 | double thetasq = disp*disp + dist*dist - 2*disp*dist*sqrt(1-lx*lx); |
| | 114 | |
| | 115 | if (i%2==0) |
| | 116 | { |
| | 117 | fout0 << log10(Energy) << " "; |
| | 118 | fout0 << log10(Size) << " "; |
| | 119 | fout0 << Zd << " "; |
| | 120 | fout0 << dist << " "; |
| | 121 | fout0 << disp << " "; |
| | 122 | fout0 << slope << " "; |
| | 123 | fout0 << m3l << " "; |
| | 124 | fout0 << Leakage1 << " "; |
| | 125 | fout0 << Width << " "; |
| | 126 | fout0 << Length << endl; |
| | 127 | } |
| | 128 | else |
| | 129 | { |
| | 130 | fout1 << log10(Energy) << " "; |
| | 131 | fout1 << log10(Size) << " "; |
| | 132 | fout1 << Zd << " "; |
| | 133 | fout1 << dist << " "; |
| | 134 | fout1 << disp << " "; |
| | 135 | fout1 << slope << " "; |
| | 136 | fout1 << m3l << " "; |
| | 137 | fout1 << Leakage1 << " "; |
| | 138 | fout1 << Width << " "; |
| | 139 | fout1 << Length << endl; |
| | 140 | |
| | 141 | if (thetasq<0.024) |
| | 142 | continue; |
| | 143 | |
| | 144 | bool cutq = NumIslands<3.5 && NumUsedPixels>5.5 && Leakage1<0.1; |
| | 145 | if (!cutq) |
| | 146 | continue; |
| | 147 | |
| | 148 | bool cut0 = area < log10(Size)*898-1535; |
| | 149 | if (!cut0) |
| | 150 | continue; |
| | 151 | |
| | 152 | fout2 << log10(Energy) << " "; |
| | 153 | fout2 << log10(Size) << " "; |
| | 154 | fout2 << Zd << " "; |
| | 155 | fout2 << dist << " "; |
| | 156 | fout2 << disp << " "; |
| | 157 | fout2 << slope << " "; |
| | 158 | fout2 << m3l << " "; |
| | 159 | fout2 << Leakage1 << " "; |
| | 160 | fout2 << Width << " "; |
| | 161 | fout2 << Length << endl; |
| | 162 | } |
| | 163 | } |
| | 164 | } |
| | 165 | }}} |
| | 166 | }}} |
| | 167 | |
| | 168 | == Training == |
| | 169 | |
| | 170 | {{{ |
| | 171 | fact@ihp-pc45:~/Analysis> nice -n 10 ~/ranger-master/cpp_version/build/ranger --file sim-train.csv --depvarname Energy --memmode 1 --treetype 3 --verbose --impmeasure 1 --outprefix sim-train |
| | 172 | Starting Ranger. |
| | 173 | Loading input file: sim-train.csv. |
| | 174 | Growing trees .. |
| | 175 | Computing prediction error .. |
| | 176 | |
| | 177 | Tree type: Regression |
| | 178 | Dependent variable name: Energy |
| | 179 | Dependent variable ID: 0 |
| | 180 | Number of trees: 500 |
| | 181 | Sample size: 55417 |
| | 182 | Number of independent variables: 9 |
| | 183 | Mtry: 3 |
| | 184 | Target node size: 5 |
| | 185 | Variable importance mode: 1 |
| | 186 | Memory mode: 1 |
| | 187 | Seed: 0 |
| | 188 | Number of threads: 8 |
| | 189 | |
| | 190 | Overall OOB prediction error: 0.0178514 |
| | 191 | |
| | 192 | Saved variable importance to file sim-train.importance. |
| | 193 | Saved prediction error to file sim-train.confusion. |
| | 194 | Finished Ranger. |
| | 195 | }}} |
| | 196 | |
| | 197 | It will write a file called '''sim-train.forest'''. |
| | 198 | |
| | 199 | == Testing == |
| | 200 | |
| | 201 | {{{ |
| | 202 | nice -n 10 ~/ranger-master/cpp_version/build/ranger --file sim-test.csv --depvarname Energy --memmode 1 --treetype 3 --verbose --impmeasure 1 --predict sim-train.forest |
| | 203 | nice -n 10 ~/ranger-master/cpp_version/build/ranger --file sim-test-cuts.csv --depvarname Energy --memmode 1 --treetype 3 --verbose --impmeasure 1 --predict sim-train.forest |
| | 204 | }}} |
| | 205 | |
| | 206 | Here is an example output |
| | 207 | {{{ |
| | 208 | Starting Ranger. |
| | 209 | Loading input file: sim-test-cuts.csv. |
| | 210 | Loading forest from file sim-train.forest. |
| | 211 | Predicting .. |
| | 212 | |
| | 213 | Tree type: Regression |
| | 214 | Dependent variable name: Energy |
| | 215 | Dependent variable ID: 0 |
| | 216 | Number of trees: 500 |
| | 217 | Sample size: 5135 |
| | 218 | Number of independent variables: 9 |
| | 219 | Mtry: 3 |
| | 220 | Target node size: 5 |
| | 221 | Variable importance mode: 1 |
| | 222 | Memory mode: 1 |
| | 223 | Seed: 0 |
| | 224 | Number of threads: 8 |
| | 225 | |
| | 226 | Saved predictions to file ranger_out.prediction. |
| | 227 | Finished Ranger. |
| | 228 | }}} |
| | 229 | |
| | 230 | |
| | 231 | |