| 1 | |
| 2 | == Writing Input Files == |
| 3 | |
| 4 | {{{#!Spoiler |
| 5 | {{{#!cpp |
| 6 | #include <iostream> |
| 7 | #include <iomanip> |
| 8 | #include <fstream> |
| 9 | |
| 10 | #include <TMath.h> |
| 11 | #include <TChain.h> |
| 12 | |
| 13 | using namespace std; |
| 14 | |
| 15 | void writesim() |
| 16 | { |
| 17 | // Create chain for the tree Result |
| 18 | // This is just easier than using TFile/TTree |
| 19 | TChain c("Result"); |
| 20 | |
| 21 | // Add the input file to the |
| 22 | c.AddFile("simulation.root"); |
| 23 | |
| 24 | // Define variables for all leaves to be accessed |
| 25 | // By definition rootifysql writes only doubles |
| 26 | double X, Y, MeanX, MeanY, Width, Length, CosDelta, SinDelta, |
| 27 | M3Long, SlopeLong, Leakage1, SlopeSpreadWeighted, Size, |
| 28 | ConcCore, ConcCOG, NumIslands, NumUsedPixels, Zd, Energy; |
| 29 | |
| 30 | // Connect the variables to the cordesponding leaves |
| 31 | //c.SetBranchAddress("FileId", &FileId); |
| 32 | //c.SetBranchAddress("EvtNumber", &EvtNumber); |
| 33 | c.SetBranchAddress("X", &X); |
| 34 | c.SetBranchAddress("Y", &Y); |
| 35 | c.SetBranchAddress("MeanX", &MeanX); |
| 36 | c.SetBranchAddress("MeanY", &MeanY); |
| 37 | c.SetBranchAddress("Width", &Width); |
| 38 | c.SetBranchAddress("Length", &Length); |
| 39 | c.SetBranchAddress("CosDelta", &CosDelta); |
| 40 | c.SetBranchAddress("SinDelta", &SinDelta); |
| 41 | c.SetBranchAddress("M3Long", &M3Long); |
| 42 | c.SetBranchAddress("SlopeLong", &SlopeLong); |
| 43 | c.SetBranchAddress("Leakage1", &Leakage1); |
| 44 | c.SetBranchAddress("NumIslands", &NumIslands); |
| 45 | c.SetBranchAddress("NumUsedPixels", &NumUsedPixels); |
| 46 | c.SetBranchAddress("Size", &Size); |
| 47 | c.SetBranchAddress("Zd", &Zd); |
| 48 | c.SetBranchAddress("Energy", &Energy); |
| 49 | |
| 50 | // Set some constants (they could be included in the database |
| 51 | // in the future) |
| 52 | double mm2deg = +0.0117193246260285378; |
| 53 | //double abberation = 1.02; |
| 54 | |
| 55 | // -------------------- Source dependent parameter calculation ------------------- |
| 56 | |
| 57 | ofstream fout0("sim-train.csv"); // %1 |
| 58 | ofstream fout1("sim-test.csv"); // %0 |
| 59 | ofstream fout2("sim-test-cuts.csv"); |
| 60 | |
| 61 | fout0 << "Energy Size Zd Dist Disp Slope M3L Leakage Width Length" << endl; |
| 62 | fout1 << "Energy Size Zd Dist Disp Slope M3L Leakage Width Length" << endl; |
| 63 | fout2 << "Energy Size Zd Dist Disp Slope M3L Leakage Width Length" << endl; |
| 64 | |
| 65 | // Loop over all wobble positions in the camera |
| 66 | for (int i=0; i<c.GetEntries(); i++) |
| 67 | { |
| 68 | // read the i-th event from the file |
| 69 | c.GetEntry(i); |
| 70 | |
| 71 | // First calculate all cuts to speedup the analysis |
| 72 | double area = TMath::Pi()*Width*Length; |
| 73 | |
| 74 | // The abberation correction does increase also Width and Length by 1.02 |
| 75 | |
| 76 | int angle = 0; |
| 77 | |
| 78 | // -------------------- Source dependent parameter calculation ------------------- |
| 79 | |
| 80 | double cr = cos(angle*TMath::DegToRad()); |
| 81 | double sr = sin(angle*TMath::DegToRad()); |
| 82 | |
| 83 | double px = cr*X-sr*Y; |
| 84 | double py = cr*Y+sr*X; |
| 85 | |
| 86 | double dx = MeanX - px*1.022; |
| 87 | double dy = MeanY - py*1.022; |
| 88 | |
| 89 | double norm = sqrt(dx*dx + dy*dy); |
| 90 | double dist = norm*mm2deg; |
| 91 | |
| 92 | double lx = min(max((CosDelta*dy - SinDelta*dx)/norm, -1.), 1.); |
| 93 | double ly = min(max((CosDelta*dx + SinDelta*dy)/norm, -1.), 1.); |
| 94 | |
| 95 | double alpha = asin(lx); |
| 96 | double sgn = TMath::Sign(1., ly); |
| 97 | |
| 98 | // ------------------------------- Application ---------------------------------- |
| 99 | |
| 100 | double m3l = M3Long*sgn*mm2deg; |
| 101 | double slope = SlopeLong*sgn/mm2deg; |
| 102 | |
| 103 | // --------------------------------- Analysis ----------------------------------- |
| 104 | |
| 105 | //double xi = 1.34723 + 0.15214 *slope + 0.970704*(1-1/(1+8.89826*Leakage1)); |
| 106 | double xi = 1.340 + 0.0755*slope + 1.67972*(1-1/(1+4.86232*Leakage1)); |
| 107 | |
| 108 | double sign1 = m3l+0.07; |
| 109 | double sign2 = (dist-0.5)*7.2-slope; |
| 110 | |
| 111 | double disp = (sign1<0 || sign2<0 ? -xi : xi)*(1-Width/Length); |
| 112 | |
| 113 | double thetasq = disp*disp + dist*dist - 2*disp*dist*sqrt(1-lx*lx); |
| 114 | |
| 115 | if (i%2==0) |
| 116 | { |
| 117 | fout0 << log10(Energy) << " "; |
| 118 | fout0 << log10(Size) << " "; |
| 119 | fout0 << Zd << " "; |
| 120 | fout0 << dist << " "; |
| 121 | fout0 << disp << " "; |
| 122 | fout0 << slope << " "; |
| 123 | fout0 << m3l << " "; |
| 124 | fout0 << Leakage1 << " "; |
| 125 | fout0 << Width << " "; |
| 126 | fout0 << Length << endl; |
| 127 | } |
| 128 | else |
| 129 | { |
| 130 | fout1 << log10(Energy) << " "; |
| 131 | fout1 << log10(Size) << " "; |
| 132 | fout1 << Zd << " "; |
| 133 | fout1 << dist << " "; |
| 134 | fout1 << disp << " "; |
| 135 | fout1 << slope << " "; |
| 136 | fout1 << m3l << " "; |
| 137 | fout1 << Leakage1 << " "; |
| 138 | fout1 << Width << " "; |
| 139 | fout1 << Length << endl; |
| 140 | |
| 141 | if (thetasq<0.024) |
| 142 | continue; |
| 143 | |
| 144 | bool cutq = NumIslands<3.5 && NumUsedPixels>5.5 && Leakage1<0.1; |
| 145 | if (!cutq) |
| 146 | continue; |
| 147 | |
| 148 | bool cut0 = area < log10(Size)*898-1535; |
| 149 | if (!cut0) |
| 150 | continue; |
| 151 | |
| 152 | fout2 << log10(Energy) << " "; |
| 153 | fout2 << log10(Size) << " "; |
| 154 | fout2 << Zd << " "; |
| 155 | fout2 << dist << " "; |
| 156 | fout2 << disp << " "; |
| 157 | fout2 << slope << " "; |
| 158 | fout2 << m3l << " "; |
| 159 | fout2 << Leakage1 << " "; |
| 160 | fout2 << Width << " "; |
| 161 | fout2 << Length << endl; |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | }}} |
| 166 | }}} |
| 167 | |
| 168 | == Training == |
| 169 | |
| 170 | {{{ |
| 171 | fact@ihp-pc45:~/Analysis> nice -n 10 ~/ranger-master/cpp_version/build/ranger --file sim-train.csv --depvarname Energy --memmode 1 --treetype 3 --verbose --impmeasure 1 --outprefix sim-train |
| 172 | Starting Ranger. |
| 173 | Loading input file: sim-train.csv. |
| 174 | Growing trees .. |
| 175 | Computing prediction error .. |
| 176 | |
| 177 | Tree type: Regression |
| 178 | Dependent variable name: Energy |
| 179 | Dependent variable ID: 0 |
| 180 | Number of trees: 500 |
| 181 | Sample size: 55417 |
| 182 | Number of independent variables: 9 |
| 183 | Mtry: 3 |
| 184 | Target node size: 5 |
| 185 | Variable importance mode: 1 |
| 186 | Memory mode: 1 |
| 187 | Seed: 0 |
| 188 | Number of threads: 8 |
| 189 | |
| 190 | Overall OOB prediction error: 0.0178514 |
| 191 | |
| 192 | Saved variable importance to file sim-train.importance. |
| 193 | Saved prediction error to file sim-train.confusion. |
| 194 | Finished Ranger. |
| 195 | }}} |
| 196 | |
| 197 | It will write a file called '''sim-train.forest'''. |
| 198 | |
| 199 | == Testing == |
| 200 | |
| 201 | {{{ |
| 202 | nice -n 10 ~/ranger-master/cpp_version/build/ranger --file sim-test.csv --depvarname Energy --memmode 1 --treetype 3 --verbose --impmeasure 1 --predict sim-train.forest |
| 203 | nice -n 10 ~/ranger-master/cpp_version/build/ranger --file sim-test-cuts.csv --depvarname Energy --memmode 1 --treetype 3 --verbose --impmeasure 1 --predict sim-train.forest |
| 204 | }}} |
| 205 | |
| 206 | Here is an example output |
| 207 | {{{ |
| 208 | Starting Ranger. |
| 209 | Loading input file: sim-test-cuts.csv. |
| 210 | Loading forest from file sim-train.forest. |
| 211 | Predicting .. |
| 212 | |
| 213 | Tree type: Regression |
| 214 | Dependent variable name: Energy |
| 215 | Dependent variable ID: 0 |
| 216 | Number of trees: 500 |
| 217 | Sample size: 5135 |
| 218 | Number of independent variables: 9 |
| 219 | Mtry: 3 |
| 220 | Target node size: 5 |
| 221 | Variable importance mode: 1 |
| 222 | Memory mode: 1 |
| 223 | Seed: 0 |
| 224 | Number of threads: 8 |
| 225 | |
| 226 | Saved predictions to file ranger_out.prediction. |
| 227 | Finished Ranger. |
| 228 | }}} |
| 229 | |
| 230 | |
| 231 | |