| | 59 | |
| | 60 | {{{#!fortran |
| | 61 | C LIMITING FACTOR FOR STEP SIZE OF ELECTRON IN MAGNETIC FIELD |
| | 62 | #if __CERENKOV__ && __IACT__ |
| | 63 | C LIMIT IN DEFLECTION ANGLE IS 2.5 MILLIRADIAN = 0.143 DEG |
| | 64 | C WE USE A LIMIT OF ABOUT 0.05 DEG (APPROX. 1 MILLIRAD) |
| | 65 | BLIMIT = 0.001D0 / BNORM |
| | 66 | #else |
| | 67 | C WE USE A LIMIT OF ABOUT 11.4 DEG (0.2 RAD) |
| | 68 | BLIMIT = 0.2D0 / BNORM |
| | 69 | #endif |
| | 70 | }}} |
| | 71 | |
| | 72 | {{{#!fortran |
| | 73 | #if __CERENKOV__ && __IACT__ |
| | 74 | C SCATTERING ANGLES OF MUONS SHOULD BE SMALLER THAN THE PIXEL SIZE. |
| | 75 | * AUX = MIN( 1.D0, 0.015D0*GAMMA ) |
| | 76 | C THE SAME SHOULD HOLD FOR DEFLECTION IN THE GEOMAGNETIC FIELD. |
| | 77 | C HERE USING A MAXIMUM RMS SCATTERING / DEFLECTION ANGLE OF 0.05 DEG |
| | 78 | C AND APPROXIMATE ALL BETA*GAMMA TERMS BY GAMMA. |
| | 79 | Cxx Write(*,*) 'mu step old-style step=',MIN( 1.D0,0.015D0*GAMMA ) |
| | 80 | C FOR A MEAN SCATTERING ANGLE THETA WE HAVE A STEP LENGTH OF ABOUT |
| | 81 | C (THETA / (13.6 MEV/(BETA*C*P))**2 RADIATION LENGTHS (PDG), |
| | 82 | C NOT TAKING INTO ACCOUNT THE NON-GAUSSIAN PART OF THE DISTIBUTION. |
| | 83 | C FOR THE MOMENT DON''T CARE ABOUT THE DIFFERENCE BETWEEN THE |
| | 84 | C 'COULOMB SCATTERING LENGTH' 37.7 G/CM**2 (=C(21)) AND THE |
| | 85 | C RADIATION LENGTH OF 36.66 OR 36.62 G/CM**2 IN AIR. |
| | 86 | C NOTE: PI/180/(13.6 MEV/(BETA*C*P)) APPROX 0.136*GAMMA FOR MUONS. |
| | 87 | AUX = MIN( 1.D0, ((0.05*0.136)*GAMMA)**2 ) |
| | 88 | IF ( BNORMC .GT. 0.D0 ) THEN |
| | 89 | C NOTE: PI/180*PAMA(5)*BETA*GAMMA APPROX 0.00185*GAMMA |
| | 90 | AUX = MIN( AUX, (0.05*0.00185)*GAMMA*RHOF(H)/(BNORMC*C(21)) ) |
| | 91 | ENDIF |
| | 92 | Cxx Write(*,*) 'mu step new-style step=',AUX |
| | 93 | #else |
| | 94 | AUX = MIN( 10.D0, 0.015D0*GAMMA ) |
| | 95 | #endif |
| | 96 | }}} |