

Crosscheck: Calculation of DRS4
time calibration constants

● What do we have
● How to overcome the problem
● What we currently do
● How well it works

2GHz sampling how?

cell 0 cell 0cell 1023 cell 0

1024ns

DSPEED

f_s = 2048 · f_ref
f_ref ≈ 976.56kHz

DSPEED

DRS4_REF_CLK

domino wave

readout cell

Problem:

Probably because of inhomogeneities in the doping
of the NMOS transistors between each NAND and
NOT in the domino chain the time to switch from
one cell to another is not homogeniously distributed
within one DRS4 channel.

In order to achieve a close to perfect timing
resolution we want to calibrate for this effect.

But how exactly should we do it?

What can be done?

[DRS4 datasheet rev 0.9]

● In FACT we do not have an increadibly precise sine-wave at our disposal.

● We have a 250MHz (cable filtered) square wave, i.e. something between
square and sine wave ;-)

● The phases of calibration signal and domino wave are fixed. (not good)

So what are we currently doing?

● We take 'drs-time' runs of 1000 events.
● fixed phase: calibration signal ↔ domino wave
● variable DRS start cell.
● 250MHz, i.e. 8 samples = 1 calibration period

● We find the zero crossings of the calibration
signal and thus e.g. the 'apparent period'.

● By averaging over many events we want to
measure the relative 'size' of certain intervals of
a DRS4 channel.

Let's define a common language →

d_i

Let's call the temporal distance between consecutive samples:
sampling delay d_i.

So sample i+1 will be taken d_i[ns] after sample i.

We already know the mean of all d_i. Since the sum is fixed to the half
period of the reference clk:
 ∑

i=0

1023

d i=P RefClk /2  d i=0.5ns

sample i

sample i+1

We find the roots of the calibration signal by simple linear interpolation. A weight w is
assigned to each delay d, according to its influence on the measurement of the period
in question.
Each period we see, forms an independent measurement k.

I.e. : From each measurement k we learn:

Example k=2 → w[129:139] = (0.6, 1, 1, …, 1, 0.9)

calibration period P_c

∑
i=0

1023

d i⋅w ik=Pc

k=1 k=3

k=2

0.6 0.91 1 1 1 1 1 1 11

What is done in DrsCalibrateTime?

● Find the weights w
ik

● Define:

● And:

● With: s = s
1024

l k=∑
i=0

1023

w ik wl i=∑
k=0

N k

w ik⋅l kw i=∑
k=0

N k

w ik

sn = ∑
i=0

n−1

wl i/∑
i=0

n−1

w i

on=n⋅1−s / sn

// Dividing the average length s of the zero-crossing
// interval in the range [0;1023] by the average length
// in the interval [0;n] yields the relative size of
// the interval in the range [0;n].
// The offset (defined as 'ideal - real') is then calculated
// as n*(1-s/s_n) = o_n

Original Code Comment:
// First calculate the average length s of a single
// zero-crossing interval in the whole range [0;1023]
// (which is identical to the/ wavelength of the
// calibration signal)

Testing!

● Choose some sampling delay distributions:
e.g. (flat, cosine, random, with_peaks)

● Choose a calibration signal (sine-wave) with:
f=250MHz, A=100mV, phase=const.

● Sample it accordingly and add a bit of noise
(rms=2mV)

● Write the result into a FITS file, so we can feed
it to a stripped down callisto-version.

Maybe it would be better, if
we had a varying phase.

So I tried it … again 1000 events:
but with varying phase between calibration

signal and domino wave.

random_normal changed

due to non fixed seed!

result:

● Both the variable phase as well as the constant
phase input create reasonable results.

● We have no error estimation yet, since the
magnitude of the deviation seems to depend on
the input very much.

But:
● I still don't understand, why

on=n⋅1−s / sn≈∑
i=0

n−1

d−d i

Summary (I)

● I think our current implementation is working
quite well.

● To Do:
● Understand why it works.
● Error estimation
● Test influence of spikes:

– undetected spikes might produce false zero crossings
– detected and removed spikes might alter zero crossings

Deeper look into DrsCalibrateTime

● Check: Does DrsCalibrateTime find the right zero
crossings?
● At first glance: No (?!)
● Reason:

When a sample == 0.
● sample values are

integers by nature, so
0 is not so unlikely.
Only due to DRS calib
we have floats and
0. samples are again
unlikely.

● So I changed this piece:

● like this:

for (size_t i=0; i<1024-1; i++) {
 if (edge>0 && v[i]>0)
 continue;
 if (edge<0 && v[i]<0)
 continue;
 if ((v[i]<0 && v[i+1]<0) || (v[i]>0 && v[i+1]>0))
 continue;
 double p = v[i]==v[i+1] ? 0.5 : v[i]/(v[i]-v[i+1]);
 // ...
}

for (size_t i=0; i<1024-1; i++) {
 if (v[i] * v[i+1] > 0.)
 continue;
 if (edge * v[i+1] <= 0.)
 continue;
 const double p = v[i]/(v[i]-v[i+1]);
 //...
}

After →

← Before

Reminder:
Since on real data, we hardly ever see
the value 0.0, the performace on real
data was actually more like the "After"
than the "Before" picture.
So we were good!

Best possible solution?
● I was curious, what the best solution would be,

that I could get using DrsCalibrateTime.
● → feed the true zero crossings.

DNL : Compared to the truth

● Even under best conditions the truth can not be
reconstructed with this method. Why is that so?

● Can we do better?

Maybe this is also a way to go:

● Find the weights w
ik
 → Weight Matrix W

● W(k x 1024) : with k=M·N
● M : number of periods per event (~ 2 x 128)
● N : Number of events (~1000)

● Multiplication of this matrix with the sampling delay
vector d must yield the true calibration Period.

● The calibration Period is either known in advance
or estimated as s

1024
 (see class DrsCalibrateTime)

● So we have to solve: W⋅d= P cal

Testing!

● I tested this method similarly, as the current
implementation in DrsCalibrateTime.

● Result 1:
● Data with const phase produces oscillating results.

● Result 2:
● For data with variable phase the results look fine.
● → let's look only at those results

 peak.fits

● In case the true zero
crossings are used to
find the w

ik
 the result

is perfect.

 peak.fits

● In case the true zero
crossings are used to
find the w

ik
 the result

is perfect.
● Oscillations:

● due to the inaccurate
measurement of the
zero crossings?

● In order to use the 2nd method, we need a
variable phase between calibration signal and
domino wave.

● How to get this without touching the hardware?
● Using the LMK03000 output delay:

17 different delays: [0, 400, 550,700, ..., 2650]ps
● Using different LMK03000 settings to get different

calibration frequencies.
(currently we have 250MHz)

LMK03000
● 68 different possibilities

DRS_REF_CLK = 0.9765625MHz

current state

Summary (II)

● I think our current implementation is working
quite well, but we may want to have a look into
the 2nd method, I presented here.

● Ritt et al have shown a new method at IEEE,
but I have so far not seen any slide or any
detail about it.

● It might be worth to take "a whole lot" of
different time calibration data once, and see
what we can learn from it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

