| 1 | /*
|
|---|
| 2 | *+
|
|---|
| 3 | * Name:
|
|---|
| 4 | * palPertue
|
|---|
| 5 |
|
|---|
| 6 | * Purpose:
|
|---|
| 7 | * Update the universal elements by applying planetary perturbations
|
|---|
| 8 |
|
|---|
| 9 | * Language:
|
|---|
| 10 | * Starlink ANSI C
|
|---|
| 11 |
|
|---|
| 12 | * Type of Module:
|
|---|
| 13 | * Library routine
|
|---|
| 14 |
|
|---|
| 15 | * Invocation:
|
|---|
| 16 | * void palPertue( double date, double u[13], int *jstat );
|
|---|
| 17 |
|
|---|
| 18 | * Arguments:
|
|---|
| 19 | * date = double (Given)
|
|---|
| 20 | * Final epoch (TT MJD) for the update elements.
|
|---|
| 21 | * u = const double [13] (Given & Returned)
|
|---|
| 22 | * Universal orbital elements (Note 1)
|
|---|
| 23 | * (0) combined mass (M+m)
|
|---|
| 24 | * (1) total energy of the orbit (alpha)
|
|---|
| 25 | * (2) reference (osculating) epoch (t0)
|
|---|
| 26 | * (3-5) position at reference epoch (r0)
|
|---|
| 27 | * (6-8) velocity at reference epoch (v0)
|
|---|
| 28 | * (9) heliocentric distance at reference epoch
|
|---|
| 29 | * (10) r0.v0
|
|---|
| 30 | * (11) date (t)
|
|---|
| 31 | * (12) universal eccentric anomaly (psi) of date, approx
|
|---|
| 32 | * jstat = int * (Returned)
|
|---|
| 33 | * status:
|
|---|
| 34 | * +102 = warning, distant epoch
|
|---|
| 35 | * +101 = warning, large timespan ( > 100 years)
|
|---|
| 36 | * +1 to +10 = coincident with major planet (Note 5)
|
|---|
| 37 | * 0 = OK
|
|---|
| 38 | * -1 = numerical error
|
|---|
| 39 |
|
|---|
| 40 | * Description:
|
|---|
| 41 | * Update the universal elements of an asteroid or comet by applying
|
|---|
| 42 | * planetary perturbations.
|
|---|
| 43 |
|
|---|
| 44 | * Authors:
|
|---|
| 45 | * PTW: Pat Wallace (STFC)
|
|---|
| 46 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
|---|
| 47 | * {enter_new_authors_here}
|
|---|
| 48 |
|
|---|
| 49 | * Notes:
|
|---|
| 50 | * - The "universal" elements are those which define the orbit for the
|
|---|
| 51 | * purposes of the method of universal variables (see reference 2).
|
|---|
| 52 | * They consist of the combined mass of the two bodies, an epoch,
|
|---|
| 53 | * and the position and velocity vectors (arbitrary reference frame)
|
|---|
| 54 | * at that epoch. The parameter set used here includes also various
|
|---|
| 55 | * quantities that can, in fact, be derived from the other
|
|---|
| 56 | * information. This approach is taken to avoiding unnecessary
|
|---|
| 57 | * computation and loss of accuracy. The supplementary quantities
|
|---|
| 58 | * are (i) alpha, which is proportional to the total energy of the
|
|---|
| 59 | * orbit, (ii) the heliocentric distance at epoch, (iii) the
|
|---|
| 60 | * outwards component of the velocity at the given epoch, (iv) an
|
|---|
| 61 | * estimate of psi, the "universal eccentric anomaly" at a given
|
|---|
| 62 | * date and (v) that date.
|
|---|
| 63 | * - The universal elements are with respect to the J2000 equator and
|
|---|
| 64 | * equinox.
|
|---|
| 65 | * - The epochs DATE, U(3) and U(12) are all Modified Julian Dates
|
|---|
| 66 | * (JD-2400000.5).
|
|---|
| 67 | * - The algorithm is a simplified form of Encke's method. It takes as
|
|---|
| 68 | * a basis the unperturbed motion of the body, and numerically
|
|---|
| 69 | * integrates the perturbing accelerations from the major planets.
|
|---|
| 70 | * The expression used is essentially Sterne's 6.7-2 (reference 1).
|
|---|
| 71 | * Everhart and Pitkin (reference 2) suggest rectifying the orbit at
|
|---|
| 72 | * each integration step by propagating the new perturbed position
|
|---|
| 73 | * and velocity as the new universal variables. In the present
|
|---|
| 74 | * routine the orbit is rectified less frequently than this, in order
|
|---|
| 75 | * to gain a slight speed advantage. However, the rectification is
|
|---|
| 76 | * done directly in terms of position and velocity, as suggested by
|
|---|
| 77 | * Everhart and Pitkin, bypassing the use of conventional orbital
|
|---|
| 78 | * elements.
|
|---|
| 79 | *
|
|---|
| 80 | * The f(q) part of the full Encke method is not used. The purpose
|
|---|
| 81 | * of this part is to avoid subtracting two nearly equal quantities
|
|---|
| 82 | * when calculating the "indirect member", which takes account of the
|
|---|
| 83 | * small change in the Sun's attraction due to the slightly displaced
|
|---|
| 84 | * position of the perturbed body. A simpler, direct calculation in
|
|---|
| 85 | * double precision proves to be faster and not significantly less
|
|---|
| 86 | * accurate.
|
|---|
| 87 | *
|
|---|
| 88 | * Apart from employing a variable timestep, and occasionally
|
|---|
| 89 | * "rectifying the orbit" to keep the indirect member small, the
|
|---|
| 90 | * integration is done in a fairly straightforward way. The
|
|---|
| 91 | * acceleration estimated for the middle of the timestep is assumed
|
|---|
| 92 | * to apply throughout that timestep; it is also used in the
|
|---|
| 93 | * extrapolation of the perturbations to the middle of the next
|
|---|
| 94 | * timestep, to predict the new disturbed position. There is no
|
|---|
| 95 | * iteration within a timestep.
|
|---|
| 96 | *
|
|---|
| 97 | * Measures are taken to reach a compromise between execution time
|
|---|
| 98 | * and accuracy. The starting-point is the goal of achieving
|
|---|
| 99 | * arcsecond accuracy for ordinary minor planets over a ten-year
|
|---|
| 100 | * timespan. This goal dictates how large the timesteps can be,
|
|---|
| 101 | * which in turn dictates how frequently the unperturbed motion has
|
|---|
| 102 | * to be recalculated from the osculating elements.
|
|---|
| 103 | *
|
|---|
| 104 | * Within predetermined limits, the timestep for the numerical
|
|---|
| 105 | * integration is varied in length in inverse proportion to the
|
|---|
| 106 | * magnitude of the net acceleration on the body from the major
|
|---|
| 107 | * planets.
|
|---|
| 108 | *
|
|---|
| 109 | * The numerical integration requires estimates of the major-planet
|
|---|
| 110 | * motions. Approximate positions for the major planets (Pluto
|
|---|
| 111 | * alone is omitted) are obtained from the routine palPlanet. Two
|
|---|
| 112 | * levels of interpolation are used, to enhance speed without
|
|---|
| 113 | * significantly degrading accuracy. At a low frequency, the routine
|
|---|
| 114 | * palPlanet is called to generate updated position+velocity "state
|
|---|
| 115 | * vectors". The only task remaining to be carried out at the full
|
|---|
| 116 | * frequency (i.e. at each integration step) is to use the state
|
|---|
| 117 | * vectors to extrapolate the planetary positions. In place of a
|
|---|
| 118 | * strictly linear extrapolation, some allowance is made for the
|
|---|
| 119 | * curvature of the orbit by scaling back the radius vector as the
|
|---|
| 120 | * linear extrapolation goes off at a tangent.
|
|---|
| 121 | *
|
|---|
| 122 | * Various other approximations are made. For example, perturbations
|
|---|
| 123 | * by Pluto and the minor planets are neglected and relativistic
|
|---|
| 124 | * effects are not taken into account.
|
|---|
| 125 | *
|
|---|
| 126 | * In the interests of simplicity, the background calculations for
|
|---|
| 127 | * the major planets are carried out en masse. The mean elements and
|
|---|
| 128 | * state vectors for all the planets are refreshed at the same time,
|
|---|
| 129 | * without regard for orbit curvature, mass or proximity.
|
|---|
| 130 | *
|
|---|
| 131 | * The Earth-Moon system is treated as a single body when the body is
|
|---|
| 132 | * distant but as separate bodies when closer to the EMB than the
|
|---|
| 133 | * parameter RNE, which incurs a time penalty but improves accuracy
|
|---|
| 134 | * for near-Earth objects.
|
|---|
| 135 | *
|
|---|
| 136 | * - This routine is not intended to be used for major planets.
|
|---|
| 137 | * However, if major-planet elements are supplied, sensible results
|
|---|
| 138 | * will, in fact, be produced. This happens because the routine
|
|---|
| 139 | * checks the separation between the body and each of the planets and
|
|---|
| 140 | * interprets a suspiciously small value (0.001 AU) as an attempt to
|
|---|
| 141 | * apply the routine to the planet concerned. If this condition is
|
|---|
| 142 | * detected, the contribution from that planet is ignored, and the
|
|---|
| 143 | * status is set to the planet number (1-10 = Mercury, Venus, EMB,
|
|---|
| 144 | * Mars, Jupiter, Saturn, Uranus, Neptune, Earth, Moon) as a warning.
|
|---|
| 145 |
|
|---|
| 146 | * See Also:
|
|---|
| 147 | * - Sterne, Theodore E., "An Introduction to Celestial Mechanics",
|
|---|
| 148 | * Interscience Publishers Inc., 1960. Section 6.7, p199.
|
|---|
| 149 | * - Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
|
|---|
| 150 |
|
|---|
| 151 | * History:
|
|---|
| 152 | * 2012-03-12 (TIMJ):
|
|---|
| 153 | * Initial version direct conversion of SLA/F.
|
|---|
| 154 | * Adapted with permission from the Fortran SLALIB library.
|
|---|
| 155 | * 2012-06-21 (TIMJ):
|
|---|
| 156 | * Support a lack of copysign() function.
|
|---|
| 157 | * 2012-06-22 (TIMJ):
|
|---|
| 158 | * Check __STDC_VERSION__
|
|---|
| 159 | * {enter_further_changes_here}
|
|---|
| 160 |
|
|---|
| 161 | * Copyright:
|
|---|
| 162 | * Copyright (C) 2004 Patrick T. Wallace
|
|---|
| 163 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
|---|
| 164 | * All Rights Reserved.
|
|---|
| 165 |
|
|---|
| 166 | * Licence:
|
|---|
| 167 | * This program is free software; you can redistribute it and/or
|
|---|
| 168 | * modify it under the terms of the GNU General Public License as
|
|---|
| 169 | * published by the Free Software Foundation; either version 3 of
|
|---|
| 170 | * the License, or (at your option) any later version.
|
|---|
| 171 | *
|
|---|
| 172 | * This program is distributed in the hope that it will be
|
|---|
| 173 | * useful, but WITHOUT ANY WARRANTY; without even the implied
|
|---|
| 174 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|---|
| 175 | * PURPOSE. See the GNU General Public License for more details.
|
|---|
| 176 | *
|
|---|
| 177 | * You should have received a copy of the GNU General Public License
|
|---|
| 178 | * along with this program; if not, write to the Free Software
|
|---|
| 179 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|---|
| 180 | * MA 02110-1301, USA.
|
|---|
| 181 |
|
|---|
| 182 | * Bugs:
|
|---|
| 183 | * {note_any_bugs_here}
|
|---|
| 184 | *-
|
|---|
| 185 | */
|
|---|
| 186 |
|
|---|
| 187 | /* Use the config file if we have one, else look at
|
|---|
| 188 | compiler defines to see if we have C99 */
|
|---|
| 189 | #if HAVE_CONFIG_H
|
|---|
| 190 | #include <config.h>
|
|---|
| 191 | #else
|
|---|
| 192 | #ifdef __STDC_VERSION__
|
|---|
| 193 | # if (__STDC_VERSION__ >= 199901L)
|
|---|
| 194 | # define HAVE_COPYSIGN 1
|
|---|
| 195 | # endif
|
|---|
| 196 | #endif
|
|---|
| 197 | #endif
|
|---|
| 198 |
|
|---|
| 199 | #include <math.h>
|
|---|
| 200 |
|
|---|
| 201 | #include "pal.h"
|
|---|
| 202 | #include "palmac.h"
|
|---|
| 203 | #include "pal1sofa.h"
|
|---|
| 204 |
|
|---|
| 205 | /* copysign is C99 */
|
|---|
| 206 | #if HAVE_COPYSIGN
|
|---|
| 207 | # define COPYSIGN copysign
|
|---|
| 208 | #else
|
|---|
| 209 | # define COPYSIGN(a,b) DSIGN(a,b)
|
|---|
| 210 | #endif
|
|---|
| 211 |
|
|---|
| 212 | void palPertue( double date, double u[13], int *jstat ) {
|
|---|
| 213 |
|
|---|
| 214 | /* Distance from EMB at which Earth and Moon are treated separately */
|
|---|
| 215 | const double RNE=1.0;
|
|---|
| 216 |
|
|---|
| 217 | /* Coincidence with major planet distance */
|
|---|
| 218 | const double COINC=0.0001;
|
|---|
| 219 |
|
|---|
| 220 | /* Coefficient relating timestep to perturbing force */
|
|---|
| 221 | const double TSC=1e-4;
|
|---|
| 222 |
|
|---|
| 223 | /* Minimum and maximum timestep (days) */
|
|---|
| 224 | const double TSMIN = 0.01;
|
|---|
| 225 | const double TSMAX = 10.0;
|
|---|
| 226 |
|
|---|
| 227 | /* Age limit for major-planet state vector (days) */
|
|---|
| 228 | const double AGEPMO=5.0;
|
|---|
| 229 |
|
|---|
| 230 | /* Age limit for major-planet mean elements (days) */
|
|---|
| 231 | const double AGEPEL=50.0;
|
|---|
| 232 |
|
|---|
| 233 | /* Margin for error when deciding whether to renew the planetary data */
|
|---|
| 234 | const double TINY=1e-6;
|
|---|
| 235 |
|
|---|
| 236 | /* Age limit for the body's osculating elements (before rectification) */
|
|---|
| 237 | const double AGEBEL=100.0;
|
|---|
| 238 |
|
|---|
| 239 | /* Gaussian gravitational constant squared */
|
|---|
| 240 | const double GCON2 = PAL__GCON * PAL__GCON;
|
|---|
| 241 |
|
|---|
| 242 | /* The final epoch */
|
|---|
| 243 | double TFINAL;
|
|---|
| 244 |
|
|---|
| 245 | /* The body's current universal elements */
|
|---|
| 246 | double UL[13];
|
|---|
| 247 |
|
|---|
| 248 | /* Current reference epoch */
|
|---|
| 249 | double T0;
|
|---|
| 250 |
|
|---|
| 251 | /* Timespan from latest orbit rectification to final epoch (days) */
|
|---|
| 252 | double TSPAN;
|
|---|
| 253 |
|
|---|
| 254 | /* Time left to go before integration is complete */
|
|---|
| 255 | double TLEFT;
|
|---|
| 256 |
|
|---|
| 257 | /* Time direction flag: +1=forwards, -1=backwards */
|
|---|
| 258 | double FB;
|
|---|
| 259 |
|
|---|
| 260 | /* First-time flag */
|
|---|
| 261 | int FIRST = 0;
|
|---|
| 262 |
|
|---|
| 263 | /*
|
|---|
| 264 | * The current perturbations
|
|---|
| 265 | */
|
|---|
| 266 |
|
|---|
| 267 | /* Epoch (days relative to current reference epoch) */
|
|---|
| 268 | double RTN;
|
|---|
| 269 | /* Position (AU) */
|
|---|
| 270 | double PERP[3];
|
|---|
| 271 | /* Velocity (AU/d) */
|
|---|
| 272 | double PERV[3];
|
|---|
| 273 | /* Acceleration (AU/d/d) */
|
|---|
| 274 | double PERA[3];
|
|---|
| 275 |
|
|---|
| 276 | /* Length of current timestep (days), and half that */
|
|---|
| 277 | double TS,HTS;
|
|---|
| 278 |
|
|---|
| 279 | /* Epoch of middle of timestep */
|
|---|
| 280 | double T;
|
|---|
| 281 |
|
|---|
| 282 | /* Epoch of planetary mean elements */
|
|---|
| 283 | double TPEL = 0.0;
|
|---|
| 284 |
|
|---|
| 285 | /* Planet number (1=Mercury, 2=Venus, 3=EMB...8=Neptune) */
|
|---|
| 286 | int NP;
|
|---|
| 287 |
|
|---|
| 288 | /* Planetary universal orbital elements */
|
|---|
| 289 | double UP[8][13];
|
|---|
| 290 |
|
|---|
| 291 | /* Epoch of planetary state vectors */
|
|---|
| 292 | double TPMO = 0.0;
|
|---|
| 293 |
|
|---|
| 294 | /* State vectors for the major planets (AU,AU/s) */
|
|---|
| 295 | double PVIN[8][6];
|
|---|
| 296 |
|
|---|
| 297 | /* Earth velocity and position vectors (AU,AU/s) */
|
|---|
| 298 | double VB[3],PB[3],VH[3],PE[3];
|
|---|
| 299 |
|
|---|
| 300 | /* Moon geocentric state vector (AU,AU/s) and position part */
|
|---|
| 301 | double PVM[6],PM[3];
|
|---|
| 302 |
|
|---|
| 303 | /* Date to J2000 de-precession matrix */
|
|---|
| 304 | double PMAT[3][3];
|
|---|
| 305 |
|
|---|
| 306 | /*
|
|---|
| 307 | * Correction terms for extrapolated major planet vectors
|
|---|
| 308 | */
|
|---|
| 309 |
|
|---|
| 310 | /* Sun-to-planet distances squared multiplied by 3 */
|
|---|
| 311 | double R2X3[8];
|
|---|
| 312 | /* Sunward acceleration terms, G/2R^3 */
|
|---|
| 313 | double GC[8];
|
|---|
| 314 | /* Tangential-to-circular correction factor */
|
|---|
| 315 | double FC;
|
|---|
| 316 | /* Radial correction factor due to Sunwards acceleration */
|
|---|
| 317 | double FG;
|
|---|
| 318 |
|
|---|
| 319 | /* The body's unperturbed and perturbed state vectors (AU,AU/s) */
|
|---|
| 320 | double PV0[6],PV[6];
|
|---|
| 321 |
|
|---|
| 322 | /* The body's perturbed and unperturbed heliocentric distances (AU) cubed */
|
|---|
| 323 | double R03,R3;
|
|---|
| 324 |
|
|---|
| 325 | /* The perturbating accelerations, indirect and direct */
|
|---|
| 326 | double FI[3],FD[3];
|
|---|
| 327 |
|
|---|
| 328 | /* Sun-to-planet vector, and distance cubed */
|
|---|
| 329 | double RHO[3],RHO3;
|
|---|
| 330 |
|
|---|
| 331 | /* Body-to-planet vector, and distance cubed */
|
|---|
| 332 | double DELTA[3],DELTA3;
|
|---|
| 333 |
|
|---|
| 334 | /* Miscellaneous */
|
|---|
| 335 | int I,J;
|
|---|
| 336 | double R2,W,DT,DT2,R,FT;
|
|---|
| 337 | int NE;
|
|---|
| 338 |
|
|---|
| 339 | /* Planetary inverse masses, Mercury through Neptune then Earth and Moon */
|
|---|
| 340 | const double AMAS[10] = {
|
|---|
| 341 | 6023600., 408523.5, 328900.5, 3098710.,
|
|---|
| 342 | 1047.355, 3498.5, 22869., 19314.,
|
|---|
| 343 | 332946.038, 27068709.
|
|---|
| 344 | };
|
|---|
| 345 |
|
|---|
| 346 | /* Preset the status to OK. */
|
|---|
| 347 | *jstat = 0;
|
|---|
| 348 |
|
|---|
| 349 | /* Copy the final epoch. */
|
|---|
| 350 | TFINAL = date;
|
|---|
| 351 |
|
|---|
| 352 | /* Copy the elements (which will be periodically updated). */
|
|---|
| 353 | for (I=0; I<13; I++) {
|
|---|
| 354 | UL[I] = u[I];
|
|---|
| 355 | }
|
|---|
| 356 |
|
|---|
| 357 | /* Initialize the working reference epoch. */
|
|---|
| 358 | T0=UL[2];
|
|---|
| 359 |
|
|---|
| 360 | /* Total timespan (days) and hence time left. */
|
|---|
| 361 | TSPAN = TFINAL-T0;
|
|---|
| 362 | TLEFT = TSPAN;
|
|---|
| 363 |
|
|---|
| 364 | /* Warn if excessive. */
|
|---|
| 365 | if (fabs(TSPAN) > 36525.0) *jstat=101;
|
|---|
| 366 |
|
|---|
| 367 | /* Time direction: +1 for forwards, -1 for backwards. */
|
|---|
| 368 | FB = COPYSIGN(1.0,TSPAN);
|
|---|
| 369 |
|
|---|
| 370 | /* Initialize relative epoch for start of current timestep. */
|
|---|
| 371 | RTN = 0.0;
|
|---|
| 372 |
|
|---|
| 373 | /* Reset the perturbations (position, velocity, acceleration). */
|
|---|
| 374 | for (I=0; I<3; I++) {
|
|---|
| 375 | PERP[I] = 0.0;
|
|---|
| 376 | PERV[I] = 0.0;
|
|---|
| 377 | PERA[I] = 0.0;
|
|---|
| 378 | }
|
|---|
| 379 |
|
|---|
| 380 | /* Set "first iteration" flag. */
|
|---|
| 381 | FIRST = 1;
|
|---|
| 382 |
|
|---|
| 383 | /* Step through the time left. */
|
|---|
| 384 | while (FB*TLEFT > 0.0) {
|
|---|
| 385 |
|
|---|
| 386 | /* Magnitude of current acceleration due to planetary attractions. */
|
|---|
| 387 | if (FIRST) {
|
|---|
| 388 | TS = TSMIN;
|
|---|
| 389 | } else {
|
|---|
| 390 | R2 = 0.0;
|
|---|
| 391 | for (I=0; I<3; I++) {
|
|---|
| 392 | W = FD[I];
|
|---|
| 393 | R2 = R2+W*W;
|
|---|
| 394 | }
|
|---|
| 395 | W = sqrt(R2);
|
|---|
| 396 |
|
|---|
| 397 | /* Use the acceleration to decide how big a timestep can be tolerated. */
|
|---|
| 398 | if (W != 0.0) {
|
|---|
| 399 | TS = DMIN(TSMAX,DMAX(TSMIN,TSC/W));
|
|---|
| 400 | } else {
|
|---|
| 401 | TS = TSMAX;
|
|---|
| 402 | }
|
|---|
| 403 | }
|
|---|
| 404 | TS = TS*FB;
|
|---|
| 405 |
|
|---|
| 406 | /* Override if final epoch is imminent. */
|
|---|
| 407 | TLEFT = TSPAN-RTN;
|
|---|
| 408 | if (fabs(TS) > fabs(TLEFT)) TS=TLEFT;
|
|---|
| 409 |
|
|---|
| 410 | /* Epoch of middle of timestep. */
|
|---|
| 411 | HTS = TS/2.0;
|
|---|
| 412 | T = T0+RTN+HTS;
|
|---|
| 413 |
|
|---|
| 414 | /* Is it time to recompute the major-planet elements? */
|
|---|
| 415 | if (FIRST || fabs(T-TPEL)-AGEPEL >= TINY) {
|
|---|
| 416 |
|
|---|
| 417 | /* Yes: go forward in time by just under the maximum allowed. */
|
|---|
| 418 | TPEL = T+FB*AGEPEL;
|
|---|
| 419 |
|
|---|
| 420 | /* Compute the state vector for the new epoch. */
|
|---|
| 421 | for (NP=1; NP<=8; NP++) {
|
|---|
| 422 | palPlanet(TPEL,NP,PV,&J);
|
|---|
| 423 |
|
|---|
| 424 | /* Warning if remote epoch, abort if error. */
|
|---|
| 425 | if (J == 1) {
|
|---|
| 426 | *jstat = 102;
|
|---|
| 427 | } else if (J != 0) {
|
|---|
| 428 | goto ABORT;
|
|---|
| 429 | }
|
|---|
| 430 |
|
|---|
| 431 | /* Transform the vector into universal elements. */
|
|---|
| 432 | palPv2ue(PV,TPEL,0.0,&(UP[NP-1][0]),&J);
|
|---|
| 433 | if (J != 0) goto ABORT;
|
|---|
| 434 | }
|
|---|
| 435 | }
|
|---|
| 436 |
|
|---|
| 437 | /* Is it time to recompute the major-planet motions? */
|
|---|
| 438 | if (FIRST || fabs(T-TPMO)-AGEPMO >= TINY) {
|
|---|
| 439 |
|
|---|
| 440 | /* Yes: look ahead. */
|
|---|
| 441 | TPMO = T+FB*AGEPMO;
|
|---|
| 442 |
|
|---|
| 443 | /* Compute the motions of each planet (AU,AU/d). */
|
|---|
| 444 | for (NP=1; NP<=8; NP++) {
|
|---|
| 445 |
|
|---|
| 446 | /* The planet's position and velocity (AU,AU/s). */
|
|---|
| 447 | palUe2pv(TPMO,&(UP[NP-1][0]),&(PVIN[NP-1][0]),&J);
|
|---|
| 448 | if (J != 0) goto ABORT;
|
|---|
| 449 |
|
|---|
| 450 | /* Scale velocity to AU/d. */
|
|---|
| 451 | for (J=3; J<6; J++) {
|
|---|
| 452 | PVIN[NP-1][J] = PVIN[NP-1][J]*PAL__SPD;
|
|---|
| 453 | }
|
|---|
| 454 |
|
|---|
| 455 | /* Precompute also the extrapolation correction terms. */
|
|---|
| 456 | R2 = 0.0;
|
|---|
| 457 | for (I=0; I<3; I++) {
|
|---|
| 458 | W = PVIN[NP-1][I];
|
|---|
| 459 | R2 = R2+W*W;
|
|---|
| 460 | }
|
|---|
| 461 | R2X3[NP-1] = R2*3.0;
|
|---|
| 462 | GC[NP-1] = GCON2/(2.0*R2*sqrt(R2));
|
|---|
| 463 | }
|
|---|
| 464 | }
|
|---|
| 465 |
|
|---|
| 466 | /* Reset the first-time flag. */
|
|---|
| 467 | FIRST = 0;
|
|---|
| 468 |
|
|---|
| 469 | /* Unperturbed motion of the body at middle of timestep (AU,AU/s). */
|
|---|
| 470 | palUe2pv(T,UL,PV0,&J);
|
|---|
| 471 | if (J != 0) goto ABORT;
|
|---|
| 472 |
|
|---|
| 473 | /* Perturbed position of the body (AU) and heliocentric distance cubed. */
|
|---|
| 474 | R2 = 0.0;
|
|---|
| 475 | for (I=0; I<3; I++) {
|
|---|
| 476 | W = PV0[I]+PERP[I]+(PERV[I]+PERA[I]*HTS/2.0)*HTS;
|
|---|
| 477 | PV[I] = W;
|
|---|
| 478 | R2 = R2+W*W;
|
|---|
| 479 | }
|
|---|
| 480 | R3 = R2*sqrt(R2);
|
|---|
| 481 |
|
|---|
| 482 | /* The body's unperturbed heliocentric distance cubed. */
|
|---|
| 483 | R2 = 0.0;
|
|---|
| 484 | for (I=0; I<3; I++) {
|
|---|
| 485 | W = PV0[I];
|
|---|
| 486 | R2 = R2+W*W;
|
|---|
| 487 | }
|
|---|
| 488 | R03 = R2*sqrt(R2);
|
|---|
| 489 |
|
|---|
| 490 | /* Compute indirect and initialize direct parts of the perturbation. */
|
|---|
| 491 | for (I=0; I<3; I++) {
|
|---|
| 492 | FI[I] = PV0[I]/R03-PV[I]/R3;
|
|---|
| 493 | FD[I] = 0.0;
|
|---|
| 494 | }
|
|---|
| 495 |
|
|---|
| 496 | /* Ready to compute the direct planetary effects. */
|
|---|
| 497 |
|
|---|
| 498 | /* Reset the "near-Earth" flag. */
|
|---|
| 499 | NE = 0;
|
|---|
| 500 |
|
|---|
| 501 | /* Interval from state-vector epoch to middle of current timestep. */
|
|---|
| 502 | DT = T-TPMO;
|
|---|
| 503 | DT2 = DT*DT;
|
|---|
| 504 |
|
|---|
| 505 | /* Planet by planet, including separate Earth and Moon. */
|
|---|
| 506 | for (NP=1; NP<10; NP++) {
|
|---|
| 507 |
|
|---|
| 508 | /* Which perturbing body? */
|
|---|
| 509 | if (NP <= 8) {
|
|---|
| 510 |
|
|---|
| 511 | /* Planet: compute the extrapolation in longitude (squared). */
|
|---|
| 512 | R2 = 0.0;
|
|---|
| 513 | for (J=3; J<6; J++) {
|
|---|
| 514 | W = PVIN[NP-1][J]*DT;
|
|---|
| 515 | R2 = R2+W*W;
|
|---|
| 516 | }
|
|---|
| 517 |
|
|---|
| 518 | /* Hence the tangential-to-circular correction factor. */
|
|---|
| 519 | FC = 1.0+R2/R2X3[NP-1];
|
|---|
| 520 |
|
|---|
| 521 | /* The radial correction factor due to the inwards acceleration. */
|
|---|
| 522 | FG = 1.0-GC[NP-1]*DT2;
|
|---|
| 523 |
|
|---|
| 524 | /* Planet's position. */
|
|---|
| 525 | for (I=0; I<3; I++) {
|
|---|
| 526 | RHO[I] = FG*(PVIN[NP-1][I]+FC*PVIN[NP-1][I+3]*DT);
|
|---|
| 527 | }
|
|---|
| 528 |
|
|---|
| 529 | } else if (NE) {
|
|---|
| 530 |
|
|---|
| 531 | /* Near-Earth and either Earth or Moon. */
|
|---|
| 532 |
|
|---|
| 533 | if (NP == 9) {
|
|---|
| 534 |
|
|---|
| 535 | /* Earth: position. */
|
|---|
| 536 | palEpv(T,PE,VH,PB,VB);
|
|---|
| 537 | for (I=0; I<3; I++) {
|
|---|
| 538 | RHO[I] = PE[I];
|
|---|
| 539 | }
|
|---|
| 540 |
|
|---|
| 541 | } else {
|
|---|
| 542 |
|
|---|
| 543 | /* Moon: position. */
|
|---|
| 544 | palPrec(palEpj(T),2000.0,PMAT);
|
|---|
| 545 | palDmoon(T,PVM);
|
|---|
| 546 | eraRxp(PMAT,PVM,PM);
|
|---|
| 547 | for (I=0; I<3; I++) {
|
|---|
| 548 | RHO[I] = PM[I]+PE[I];
|
|---|
| 549 | }
|
|---|
| 550 | }
|
|---|
| 551 | }
|
|---|
| 552 |
|
|---|
| 553 | /* Proceed unless Earth or Moon and not the near-Earth case. */
|
|---|
| 554 | if (NP <= 8 || NE) {
|
|---|
| 555 |
|
|---|
| 556 | /* Heliocentric distance cubed. */
|
|---|
| 557 | R2 = 0.0;
|
|---|
| 558 | for (I=0; I<3; I++) {
|
|---|
| 559 | W = RHO[I];
|
|---|
| 560 | R2 = R2+W*W;
|
|---|
| 561 | }
|
|---|
| 562 | R = sqrt(R2);
|
|---|
| 563 | RHO3 = R2*R;
|
|---|
| 564 |
|
|---|
| 565 | /* Body-to-planet vector, and distance. */
|
|---|
| 566 | R2 = 0.0;
|
|---|
| 567 | for (I=0; I<3; I++) {
|
|---|
| 568 | W = RHO[I]-PV[I];
|
|---|
| 569 | DELTA[I] = W;
|
|---|
| 570 | R2 = R2+W*W;
|
|---|
| 571 | }
|
|---|
| 572 | R = sqrt(R2);
|
|---|
| 573 |
|
|---|
| 574 | /* If this is the EMB, set the near-Earth flag appropriately. */
|
|---|
| 575 | if (NP == 3 && R < RNE) NE = 1;
|
|---|
| 576 |
|
|---|
| 577 | /* Proceed unless EMB and this is the near-Earth case. */
|
|---|
| 578 | if ( ! (NE && NP == 3) ) {
|
|---|
| 579 |
|
|---|
| 580 | /* If too close, ignore this planet and set a warning. */
|
|---|
| 581 | if (R < COINC) {
|
|---|
| 582 | *jstat = NP;
|
|---|
| 583 |
|
|---|
| 584 | } else {
|
|---|
| 585 |
|
|---|
| 586 | /* Accumulate "direct" part of perturbation acceleration. */
|
|---|
| 587 | DELTA3 = R2*R;
|
|---|
| 588 | W = AMAS[NP-1];
|
|---|
| 589 | for (I=0; I<3; I++) {
|
|---|
| 590 | FD[I] = FD[I]+(DELTA[I]/DELTA3-RHO[I]/RHO3)/W;
|
|---|
| 591 | }
|
|---|
| 592 | }
|
|---|
| 593 | }
|
|---|
| 594 | }
|
|---|
| 595 | }
|
|---|
| 596 |
|
|---|
| 597 | /* Update the perturbations to the end of the timestep. */
|
|---|
| 598 | RTN += TS;
|
|---|
| 599 | for (I=0; I<3; I++) {
|
|---|
| 600 | W = (FI[I]+FD[I])*GCON2;
|
|---|
| 601 | FT = W*TS;
|
|---|
| 602 | PERP[I] = PERP[I]+(PERV[I]+FT/2.0)*TS;
|
|---|
| 603 | PERV[I] = PERV[I]+FT;
|
|---|
| 604 | PERA[I] = W;
|
|---|
| 605 | }
|
|---|
| 606 |
|
|---|
| 607 | /* Time still to go. */
|
|---|
| 608 | TLEFT = TSPAN-RTN;
|
|---|
| 609 |
|
|---|
| 610 | /* Is it either time to rectify the orbit or the last time through? */
|
|---|
| 611 | if (fabs(RTN) >= AGEBEL || FB*TLEFT <= 0.0) {
|
|---|
| 612 |
|
|---|
| 613 | /* Yes: update to the end of the current timestep. */
|
|---|
| 614 | T0 += RTN;
|
|---|
| 615 | RTN = 0.0;
|
|---|
| 616 |
|
|---|
| 617 | /* The body's unperturbed motion (AU,AU/s). */
|
|---|
| 618 | palUe2pv(T0,UL,PV0,&J);
|
|---|
| 619 | if (J != 0) goto ABORT;
|
|---|
| 620 |
|
|---|
| 621 | /* Add and re-initialize the perturbations. */
|
|---|
| 622 | for (I=0; I<3; I++) {
|
|---|
| 623 | J = I+3;
|
|---|
| 624 | PV[I] = PV0[I]+PERP[I];
|
|---|
| 625 | PV[J] = PV0[J]+PERV[I]/PAL__SPD;
|
|---|
| 626 | PERP[I] = 0.0;
|
|---|
| 627 | PERV[I] = 0.0;
|
|---|
| 628 | PERA[I] = FD[I]*GCON2;
|
|---|
| 629 | }
|
|---|
| 630 |
|
|---|
| 631 | /* Use the position and velocity to set up new universal elements. */
|
|---|
| 632 | palPv2ue(PV,T0,0.0,UL,&J);
|
|---|
| 633 | if (J != 0) goto ABORT;
|
|---|
| 634 |
|
|---|
| 635 | /* Adjust the timespan and time left. */
|
|---|
| 636 | TSPAN = TFINAL-T0;
|
|---|
| 637 | TLEFT = TSPAN;
|
|---|
| 638 | }
|
|---|
| 639 |
|
|---|
| 640 | /* Next timestep. */
|
|---|
| 641 | }
|
|---|
| 642 |
|
|---|
| 643 | /* Return the updated universal-element set. */
|
|---|
| 644 | for (I=0; I<13; I++) {
|
|---|
| 645 | u[I] = UL[I];
|
|---|
| 646 | }
|
|---|
| 647 |
|
|---|
| 648 | /* Finished. */
|
|---|
| 649 | return;
|
|---|
| 650 |
|
|---|
| 651 | /* Miscellaneous numerical error. */
|
|---|
| 652 | ABORT:
|
|---|
| 653 | *jstat = -1;
|
|---|
| 654 | return;
|
|---|
| 655 | }
|
|---|