1 | \documentclass[12pt]{article}
|
---|
2 |
|
---|
3 | \usepackage{magic-tdas}
|
---|
4 |
|
---|
5 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
6 | %% BEGIN DOCUMENT
|
---|
7 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
8 | \begin{document}
|
---|
9 |
|
---|
10 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
11 | %% Please, for the formatting just include here the standard
|
---|
12 | %% elements: title, author, date, plus TDAScode
|
---|
13 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
14 | \title{Outline of a standard analysis for MAGIC \\
|
---|
15 | (including Monte Carlo work)}
|
---|
16 | \author{R. B\"ock, H. Kornmayer, W. Wittek\\
|
---|
17 | \texttt{h.kornmayer@web.de, wittek@mppmu.mpg.de}}
|
---|
18 |
|
---|
19 | \date{ \today}
|
---|
20 | \TDAScode{MAGIC-TDAS 01-??\\ ??????/W.Wittek}
|
---|
21 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
22 |
|
---|
23 | %% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
24 | \maketitle
|
---|
25 |
|
---|
26 | %% abstract %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
27 | \begin{abstract}
|
---|
28 |
|
---|
29 | \end{abstract}
|
---|
30 |
|
---|
31 | %% contents %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
32 | \thetableofcontents
|
---|
33 |
|
---|
34 | \newpage
|
---|
35 |
|
---|
36 | %% body %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
37 |
|
---|
38 | %------------------------------------------------------------
|
---|
39 | \section{Aim of this paper}
|
---|
40 | The aim of this paper is to describe the procedure to obtain the
|
---|
41 | absolute energy spectrum of a point source from the data taken with
|
---|
42 | MAGIC. This includes work on Mont Carlo (MC) data and the analysis of
|
---|
43 | the real data.
|
---|
44 |
|
---|
45 | Various steps in the procedure will depend on details of the MC
|
---|
46 | generation, on the way the real data are taken, etc.. These details
|
---|
47 | have therefore to be specified, which is done in Section 2.
|
---|
48 |
|
---|
49 | In Section 3 some basic definitions and formulas are collected in
|
---|
50 | order to avoid any misunderstanding of the meaning of frequently
|
---|
51 | used terms.
|
---|
52 |
|
---|
53 | Section 4 describes the MC work and Section 5 the actual analysis of
|
---|
54 | the real data.
|
---|
55 |
|
---|
56 | One aim of this paper is also to define jobs for those who want to
|
---|
57 | join the activities in the software developments. As will be seen, the
|
---|
58 | main ingredients both for the MC work and the real data analysis are
|
---|
59 | available. However, certain parts have yet to be implemented, others
|
---|
60 | have to be changed, modified, improved or extended. Last not least
|
---|
61 | extensive tests have to be performed.
|
---|
62 |
|
---|
63 |
|
---|
64 |
|
---|
65 | \section{Assumptions}
|
---|
66 | The assumptions for a 'standard analysis' listed below are the result of
|
---|
67 | discussions in the software group. Some of them are rather arbitrary.
|
---|
68 | They should by no means be
|
---|
69 | understood as final or optimal choices. They should be considered as a
|
---|
70 | starting point. As our experience with the analysis grows we may
|
---|
71 | have to revise some of the assumptions.
|
---|
72 |
|
---|
73 | The aim in all what follows is to define a strategy that is as simple
|
---|
74 | and robust as possible. Tests that have yet to be performed will tell
|
---|
75 | us whether the assumptions are reasonable and realistic.
|
---|
76 |
|
---|
77 | The assumptions are :
|
---|
78 |
|
---|
79 | \begin{itemize}
|
---|
80 | \item Mode of observation :\\
|
---|
81 | Data are taken in the wobble mode (\cite{konopelko99}).
|
---|
82 | This means that the telescope is
|
---|
83 | directed not to the position of the selected source but rather to a
|
---|
84 | position which has a certain offset ($\Delta\beta$) from the source
|
---|
85 | position. Every 20 minutes of observation the sign of $\Delta\beta$ is
|
---|
86 | changed. The two wobble positions are called wobble position 1 and 2.
|
---|
87 |
|
---|
88 | $\Delta \beta$ may be chosen to be a direction difference
|
---|
89 | in celestial coordinates
|
---|
90 | (declination $\delta$, right ascension $\Phi$) or in local coordinates
|
---|
91 | (zenith angle $\Theta$, azimuthal angle $\phi$).
|
---|
92 | However the direction $\Delta \beta$ is defined,
|
---|
93 | the sky region projected onto the camera is different for
|
---|
94 | wobble positions 1 and 2.
|
---|
95 |
|
---|
96 | If $\Delta \beta$ is defined to be a direction difference
|
---|
97 | in celestial coordinates,
|
---|
98 | the sky region projected onto the camera for a fixed wobble position
|
---|
99 | remains the same during tracking of a source, although the sky image
|
---|
100 | is rotating in the camera.
|
---|
101 |
|
---|
102 | If $\Delta \beta$ is defined to be a direction difference
|
---|
103 | in local coordinates,
|
---|
104 | the sky region projected onto the camera is changing continuously
|
---|
105 | during tracking of a source. The centers of the projected sky regions
|
---|
106 | lie on a circle, which is centered at the source position.
|
---|
107 |
|
---|
108 | If $\Delta \beta$ is defined to be a direction difference
|
---|
109 | in the local azimuthal
|
---|
110 | angle $\phi$, the center of the camera and the source position
|
---|
111 | would always have the same zenith angle $\Theta$. Since the reconstruction
|
---|
112 | efficiency of showers mainly depends on $\Theta$, this may be an
|
---|
113 | advantage of defining $\Delta \beta$ in this way.
|
---|
114 |
|
---|
115 | The wobble mode has to be understood as an alternative to taking on-
|
---|
116 | and off-data in separate runs. Choosing the wobble mode thus implies
|
---|
117 | that one is taking on-data only, from which also the 'off-data' have to be
|
---|
118 | obtained by some procedure.
|
---|
119 |
|
---|
120 | We propose to define $\Delta \beta$ as a direction difference in the
|
---|
121 | local azimuthal angle $\phi$ :
|
---|
122 | $\Delta \phi\;=\;\Delta \beta\;/\;sin(\Theta)$. For very small
|
---|
123 | $\Theta$ ($\Theta\;<\; 1$ degree) $\Delta \beta$ should be defined
|
---|
124 | differently, also to avoid large rotation speeds of the telescope.
|
---|
125 |
|
---|
126 | Since the radius of the trigger area is 0.8 degrees, we propose
|
---|
127 | to choose $\Delta \beta\;=\;0.4$ degrees.
|
---|
128 |
|
---|
129 |
|
---|
130 | \item Pedestals :\\
|
---|
131 | Pedestals and their fluctuations are not determined from triggered
|
---|
132 | showers but rather from pedestal events. The pedestal events are taken
|
---|
133 | 'continuously' at a constant rate of 5 Hz. In this way the pedestals
|
---|
134 | and their fluctuations are always up to date, and the presence of
|
---|
135 | stars and their position in the camera can be monitored continuously.
|
---|
136 |
|
---|
137 | \item Gamma/hadron separation :\\
|
---|
138 | It is assumed that it is possible to define a gamma/hadron separation
|
---|
139 | which is independent
|
---|
140 | \begin{itemize}
|
---|
141 | \item[-] of the level of the light of the night sky (LONS)
|
---|
142 | \item[-] of the presence of stars in the field of view (FOV) of the camera
|
---|
143 | \item[-] of the orientation of the sky image in the camera
|
---|
144 | \item[-] of the source being observed
|
---|
145 | \end{itemize}
|
---|
146 |
|
---|
147 | It has yet to be proven that this is possible. The corresponding
|
---|
148 | procedures have to be developed, which includes a proper treatment of the
|
---|
149 | pedestal fluctuations in the image analysis.
|
---|
150 |
|
---|
151 | The gamma/hadron separation will be given in terms of a set of cuts
|
---|
152 | (or certain conditions) on quantities which in general are not
|
---|
153 | identical to the measured quantities but which are derived from them. The
|
---|
154 | measurable quantities are :
|
---|
155 | \begin{itemize}
|
---|
156 | \item[-] the direction $\Theta$ and $\phi$ the telescope is pointing to
|
---|
157 | \item[-] the image parameters
|
---|
158 | \item[-] the pedestal fluctuations
|
---|
159 | \end{itemize}
|
---|
160 |
|
---|
161 | Under the above assumption the only dependence to be considered for
|
---|
162 | the collection areas (see Section 3) is the dependence on the type of
|
---|
163 | the cosmic ray particle (gamma, proton, ...), on its energy and on the
|
---|
164 | zenith angle $\Theta$.
|
---|
165 |
|
---|
166 | It has to be investigated whether also the azimuthal angle $\phi$ has to be
|
---|
167 | taken into account, for example because of influences from the earth
|
---|
168 | magnetic field.
|
---|
169 |
|
---|
170 | \item Trigger condition :\\
|
---|
171 |
|
---|
172 | \item Standard analysis cuts :\\
|
---|
173 |
|
---|
174 | \end{itemize}
|
---|
175 |
|
---|
176 |
|
---|
177 | \section{Definitions and formulas}
|
---|
178 | \subsection{Definitions}
|
---|
179 |
|
---|
180 | \begin{itemize}
|
---|
181 | \item The direction $(\Theta,\phi)$ :\\
|
---|
182 | $(\Theta,\phi)$ denotes the direction the telescope is pointing to,
|
---|
183 | not the position of the source being observed.
|
---|
184 |
|
---|
185 | \item Image parameters :\\
|
---|
186 | The standard definition of the image parameters is assumed. See for
|
---|
187 | example \cite{hillas85,fegan96,reynolds93}. We should also make use of
|
---|
188 | additional parameters like asymmetry parameters, number of islands or
|
---|
189 | mountains etc.
|
---|
190 | \end{itemize}
|
---|
191 |
|
---|
192 | Quantities which are not directly measurable, but which can be
|
---|
193 | estimated from the image parameters are :
|
---|
194 |
|
---|
195 | \begin{itemize}
|
---|
196 | \item Impact parameter :\\
|
---|
197 | The impact parameter $p$ is defined as the vertical distance
|
---|
198 | of the telescope from the shower axis.
|
---|
199 |
|
---|
200 | \item The energy of the shower
|
---|
201 | \end{itemize}
|
---|
202 |
|
---|
203 |
|
---|
204 | \subsection{Formulas}
|
---|
205 | \subsubsection{Differential gamma flux and collection area for a point source}
|
---|
206 |
|
---|
207 | The differential gamma flux from a point source $s$ is given by
|
---|
208 |
|
---|
209 | \begin{eqnarray}
|
---|
210 | \Phi^{\gamma}_s(E)\;=\;\dfrac{dN^{\gamma}_s}{dE \cdot dF \cdot dt}
|
---|
211 | \end{eqnarray}
|
---|
212 |
|
---|
213 | where $dN^{\gamma}_s$ is the number of gammas from the source $s$ in
|
---|
214 | the bin $dE,\;dF,\;dt$ of energy, area and time respectively. We
|
---|
215 | denote the probability for 'observing' a gamma shower with energy
|
---|
216 | $E$, zenith angle $\Theta$ and position $F$ in a plane perpendicular
|
---|
217 | to the source direction by $R^{\gamma}(E,\Theta,F)$. Depending on the
|
---|
218 | special study, the term 'observing' may mean triggering,
|
---|
219 | reconstructing, etc.
|
---|
220 |
|
---|
221 | The effective collection area is defined as
|
---|
222 |
|
---|
223 | \begin{eqnarray}
|
---|
224 | F^{\gamma}_{eff}(E,\Theta)\; &= &\int R^{\gamma}(E,\Theta,F)\cdot dF
|
---|
225 | \label{eq:form-1}
|
---|
226 | \end{eqnarray}
|
---|
227 |
|
---|
228 | A side remark : The well known behaviour that the effective collection
|
---|
229 | area (well above the threshold energy) is larger for larger zenith angles
|
---|
230 | $\Theta$, is due to the fact that at higher $\Theta$ the distance of
|
---|
231 | the shower maximum (where the majority of Cherenkov photons is
|
---|
232 | emitted) from the detector is larger than at smaller $\Theta$. The
|
---|
233 | area in which $R^{\gamma}(E,\Theta,F)$ contributes significantly to
|
---|
234 | the integral (\ref{eq:form-1}) is therefore larger, resulting in a
|
---|
235 | larger $F^{\gamma}_{eff}(E,\Theta)$. For the simulation this means,
|
---|
236 | that the maximum impact parameter should be chosen larger for larger $\Theta$.
|
---|
237 |
|
---|
238 | The number of $\gamma$ showers observed in the bin $\Delta \Theta$ of
|
---|
239 | the zenith angle and in the bin $\Delta E$ of the energy is
|
---|
240 | then :
|
---|
241 |
|
---|
242 | \begin{eqnarray}
|
---|
243 | \Delta N^{\gamma,obs}_s(E,\Theta) &= &\int R^{\gamma}(E,\Theta,F) \cdot
|
---|
244 | \Phi^{\gamma}_s(E) \cdot dE \cdot dF \cdot dt \\
|
---|
245 | &= &\Delta T_{on}(\Theta) \cdot
|
---|
246 | \int_{\Delta E}{} \Phi^{\gamma}_s(E)\cdot
|
---|
247 | F^{\gamma}_{eff}(E,\Theta)\cdot dE \\
|
---|
248 | \end{eqnarray}
|
---|
249 |
|
---|
250 | Assuming that $F^{\gamma}_{eff}(E,\Theta)$ depends only weakly on $E$
|
---|
251 | in the (sufficiently small) interval $\Delta E$ gives
|
---|
252 |
|
---|
253 | \begin{eqnarray}
|
---|
254 | \Delta N^{\gamma,obs}_s(E,\Theta)
|
---|
255 | &\approx &\Delta T_{on}(\Theta) \cdot
|
---|
256 | F^{\gamma}_{eff}(E,\Theta) \cdot \int_{\Delta E}{}
|
---|
257 | \Phi^{\gamma}_s(E)\cdot dE \label{eq:form0}\\
|
---|
258 | &\approx &\Delta T_{on}(\Theta) \cdot
|
---|
259 | F^{\gamma}_{eff}(E,\Theta) \cdot \Delta E \cdot
|
---|
260 | \overline{\Phi^{\gamma}_s}(E) \label{eq:form1}
|
---|
261 | \end{eqnarray}
|
---|
262 |
|
---|
263 | Here $\Delta T_{on}(\Theta)$ is the effective on-time for the data
|
---|
264 | taken in the zenith angle bin $\Delta \Theta$ and $\overline{\Phi^{\gamma}_s}(E)$
|
---|
265 | is the average differential gamma flux in the energy bin $\Delta E$ :
|
---|
266 |
|
---|
267 | \begin{eqnarray}
|
---|
268 | \overline{\Phi^{\gamma}_s}(E) &=
|
---|
269 | &\dfrac{1}{\Delta E}\;\int_{\Delta E}{}
|
---|
270 | \Phi^{\gamma}_s(E)\cdot dE
|
---|
271 | \end{eqnarray}
|
---|
272 |
|
---|
273 | By inverting equation (\ref{eq:form1}) and setting
|
---|
274 | $\Delta E\;=\;(E^{up}-E^{low})\;\;\;\;\overline{\Phi^{\gamma}_s}(E)$ can
|
---|
275 | be written as
|
---|
276 |
|
---|
277 | \begin{eqnarray}
|
---|
278 | \overline{\Phi^{\gamma}_s}(E) &=
|
---|
279 | &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)}
|
---|
280 | {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta) \cdot
|
---|
281 | (E^{up}-E^{low}) }
|
---|
282 | \label{eq:form2}
|
---|
283 | \end{eqnarray}
|
---|
284 |
|
---|
285 | By means of equation (\ref{eq:form2}) $\overline{\Phi^{\gamma}_s}(E)$
|
---|
286 | can be determined
|
---|
287 | from the measured $\Delta N^{\gamma,obs}_s(E,\Theta)$ and
|
---|
288 | $\Delta T_{on}(\Theta)$, using the collection area
|
---|
289 | $F^{\gamma}_{eff}(E,\Theta)$, which is obtained from MC data.
|
---|
290 |
|
---|
291 | Equation (\ref{eq:form2}) is for a limited and fixed region of
|
---|
292 | the zenith angle. One may calculate $\overline{\Phi^{\gamma}_s}(E)$ from the
|
---|
293 | data taken at all $\Theta$, in which case
|
---|
294 |
|
---|
295 | \begin{eqnarray}
|
---|
296 | \overline{\Phi^{\gamma}_s}(E) &=
|
---|
297 | &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)}
|
---|
298 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i)
|
---|
299 | \cdot (E^{up}_i-E^{low}_i) }
|
---|
300 | \label{eq:form3}
|
---|
301 | \end{eqnarray}
|
---|
302 |
|
---|
303 | If a fixed spectral index $\alpha$ is assumed for the differential
|
---|
304 | source spectrum
|
---|
305 |
|
---|
306 | \begin{eqnarray}
|
---|
307 | \Phi^{\gamma}_s(E) &= &\Phi^{\gamma}_0 \cdot
|
---|
308 | \left(\dfrac{E}{GeV}\right)^{-\alpha}
|
---|
309 | \end{eqnarray}
|
---|
310 |
|
---|
311 | one gets
|
---|
312 |
|
---|
313 | \begin{eqnarray}
|
---|
314 | \int_{\Delta E}{} \Phi^{\gamma}_s(E) \cdot dE &=
|
---|
315 | &\dfrac{\Phi^{\gamma}_0}{1-\alpha}
|
---|
316 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} -
|
---|
317 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]\cdot GeV
|
---|
318 | \label{eq:form4}
|
---|
319 | \end{eqnarray}
|
---|
320 |
|
---|
321 | Inserting (\ref{eq:form4}) into (\ref{eq:form0}) yields
|
---|
322 |
|
---|
323 | \begin{eqnarray}
|
---|
324 | \Phi^{\gamma}_0 &=
|
---|
325 | &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)}
|
---|
326 | {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta)
|
---|
327 | \cdot
|
---|
328 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} -
|
---|
329 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]}
|
---|
330 | \cdot \dfrac{1-\alpha}{GeV}
|
---|
331 | \label{eq:form5}
|
---|
332 | \end{eqnarray}
|
---|
333 |
|
---|
334 | which by summing over all $\Theta$ bins gives
|
---|
335 |
|
---|
336 | \begin{eqnarray}
|
---|
337 | \Phi^{\gamma}_0 &=
|
---|
338 | &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)}
|
---|
339 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i)
|
---|
340 | \cdot
|
---|
341 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} -
|
---|
342 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]}
|
---|
343 | \cdot \dfrac{1-\alpha}{GeV}
|
---|
344 | \label{eq:form6}
|
---|
345 | \end{eqnarray}
|
---|
346 |
|
---|
347 | If applied to MC data, for which $\overline{\Phi^{\gamma}_s}(E)$ is known,
|
---|
348 | equation (\ref{eq:form1}) can also be used to
|
---|
349 | determine the collection area $F^{\gamma}_{eff}(E,\Theta)$ :
|
---|
350 |
|
---|
351 | \begin{eqnarray}
|
---|
352 | F^{\gamma}_{eff}(E,\Theta) &=
|
---|
353 | &\dfrac{\Delta N^{\gamma,MC,reconstructed}_s(E,\Theta)}
|
---|
354 | {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{\gamma}_s}(E) \cdot
|
---|
355 | (E^{up}-E^{low})}
|
---|
356 | \end{eqnarray}
|
---|
357 |
|
---|
358 | This procedure of determining $F^{\gamma}_{eff}(E,\Theta)$ amounts to
|
---|
359 | performing the integration in equation (\ref{eq:form-1}) by MC. An
|
---|
360 | important precondition is that in the MC simulation all gamma showers for
|
---|
361 | which $R^{\gamma}(E,\Theta,F)$ is greater than zero were
|
---|
362 | simulated. This means in particular that the MC simulation of gammas
|
---|
363 | extends to sufficiently large impact parameters. In reality, in order to save
|
---|
364 | computer time showers will be generated up to a maximum
|
---|
365 | value of the impact parameter (possibly depending on the zenith
|
---|
366 | angle). An appropriate correction for that has to be applied later in
|
---|
367 | the analysis.
|
---|
368 |
|
---|
369 | Knowing $F^{\gamma}_{eff}(E,\Theta)$, the gamma fluxes can be obtained
|
---|
370 | from the experimental data using equation (\ref{eq:form2}),
|
---|
371 | (\ref{eq:form3}), (\ref{eq:form5}) or (\ref{eq:form6}).
|
---|
372 |
|
---|
373 | Of course, the MC data sample used for calculating
|
---|
374 | $F^{\gamma}_{eff}(E,\Theta)$ and the experimental data sample used for
|
---|
375 | determining the gamma flux by means of $F^{\gamma}_{eff}(E,\Theta)$
|
---|
376 | have to be defined identically in many respects : in particular
|
---|
377 | the set of cuts
|
---|
378 | and the offset between source position and telescope orientation have
|
---|
379 | to be the same in the MC data and the experimental data sample.
|
---|
380 |
|
---|
381 |
|
---|
382 |
|
---|
383 | \subsubsection{Differential flux and collection area for
|
---|
384 | hadronic cosmic rays}
|
---|
385 |
|
---|
386 | In the case of hadronic cosmic rays, which arrive from all directions
|
---|
387 | $\Omega$, the differential hadron flux is given by
|
---|
388 |
|
---|
389 | \begin{eqnarray}
|
---|
390 | \Phi^{h}(E)\;=\;\dfrac{dN^{h}}{dE \cdot dF \cdot dt \cdot d\Omega}
|
---|
391 | \label{eq:form-12}
|
---|
392 | \end{eqnarray}
|
---|
393 |
|
---|
394 |
|
---|
395 | In contrast to (\ref{eq:form-1}) the effective collection area for hadrons
|
---|
396 | is defined as
|
---|
397 |
|
---|
398 | \begin{eqnarray}
|
---|
399 | F^{h}_{eff}(E,\Theta)\; &= &\int R^{h}(E,\Theta,F,\Omega)\cdot dF
|
---|
400 | \cdot d\Omega
|
---|
401 | \label{eq:form-11}
|
---|
402 | \end{eqnarray}
|
---|
403 |
|
---|
404 | Note that for a fixed orientation of the telescope $(\Theta,\phi)$ the
|
---|
405 | hadrons are coming from all directions $\Omega$. The reconstruction
|
---|
406 | efficiency $R^h(E,\Theta,F,\Omega)$ of hadrons therefore depends also
|
---|
407 | on $\Omega$.
|
---|
408 |
|
---|
409 | With the definitions (\ref{eq:form-12}) and (\ref{eq:form-11})
|
---|
410 | very similar formulas are obtained for hadrons as
|
---|
411 | were derived for photons in the previous section. For clarity they
|
---|
412 | are written down explicitely :
|
---|
413 |
|
---|
414 | \begin{eqnarray}
|
---|
415 | \Delta N^{h,obs}(E,\Theta) &= &\int R^{h}(E,\Theta,F) \cdot
|
---|
416 | \Phi^{h}(E) \cdot dE \cdot dF \cdot dt \\
|
---|
417 | &= &\Delta T_{on}(\Theta) \cdot
|
---|
418 | \int_{\Delta E}{} \Phi^{h}(E)\cdot
|
---|
419 | F^{h}_{eff}(E,\Theta)\cdot dE \\
|
---|
420 | \end{eqnarray}
|
---|
421 |
|
---|
422 | \begin{eqnarray}
|
---|
423 | \Delta N^{h,obs}(E,\Theta)
|
---|
424 | &\approx &\Delta T_{on}(\Theta) \cdot
|
---|
425 | F^{h}_{eff}(E,\Theta) \cdot \int_{\Delta E}{}
|
---|
426 | \Phi^{h}(E)\cdot dE \label{eq:form10}\\
|
---|
427 | &\approx &\Delta T_{on}(\Theta) \cdot
|
---|
428 | F^{h}_{eff}(E,\Theta) \cdot \Delta E \cdot
|
---|
429 | \overline{\Phi^{h}}(E) \label{eq:form11}
|
---|
430 | \end{eqnarray}
|
---|
431 |
|
---|
432 |
|
---|
433 | \begin{eqnarray}
|
---|
434 | \overline{\Phi^{h}}(E) &=
|
---|
435 | &\dfrac{1}{\Delta E}\;\int_{\Delta E}{}
|
---|
436 | \Phi^{h}(E)\cdot dE
|
---|
437 | \end{eqnarray}
|
---|
438 |
|
---|
439 |
|
---|
440 | \begin{eqnarray}
|
---|
441 | \overline{\Phi^{h}}(E) &=
|
---|
442 | &\dfrac{\Delta N^{h,obs}(E,\Theta)}
|
---|
443 | {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta) \cdot
|
---|
444 | (E^{up}-E^{low}) }
|
---|
445 | \label{eq:form12}
|
---|
446 | \end{eqnarray}
|
---|
447 |
|
---|
448 |
|
---|
449 |
|
---|
450 | \begin{eqnarray}
|
---|
451 | \overline{\Phi^{h}}(E) &=
|
---|
452 | &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)}
|
---|
453 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i)
|
---|
454 | \cdot (E^{up}_i-E^{low}_i) }
|
---|
455 | \label{eq:form13}
|
---|
456 | \end{eqnarray}
|
---|
457 |
|
---|
458 |
|
---|
459 | \begin{eqnarray}
|
---|
460 | \Phi^{h}(E) &= &\Phi^{h}_0 \cdot
|
---|
461 | \left(\dfrac{E}{GeV}\right)^{-\beta}
|
---|
462 | \end{eqnarray}
|
---|
463 |
|
---|
464 |
|
---|
465 | \begin{eqnarray}
|
---|
466 | \int_{\Delta E}{} \Phi^{h}(E) \cdot dE &=
|
---|
467 | &\dfrac{\Phi^{h}_0}{1-\beta}
|
---|
468 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} -
|
---|
469 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]\cdot GeV
|
---|
470 | \label{eq:form14}
|
---|
471 | \end{eqnarray}
|
---|
472 |
|
---|
473 |
|
---|
474 | \begin{eqnarray}
|
---|
475 | \Phi^{h}_0 &=
|
---|
476 | &\dfrac{\Delta N^{h,obs}(E,\Theta)}
|
---|
477 | {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta)
|
---|
478 | \cdot
|
---|
479 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} -
|
---|
480 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]}
|
---|
481 | \cdot \dfrac{1-\beta}{GeV}
|
---|
482 | \label{eq:form15}
|
---|
483 | \end{eqnarray}
|
---|
484 |
|
---|
485 |
|
---|
486 | \begin{eqnarray}
|
---|
487 | \Phi^{h}_0 &=
|
---|
488 | &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)}
|
---|
489 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i)
|
---|
490 | \cdot
|
---|
491 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} -
|
---|
492 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]}
|
---|
493 | \cdot \dfrac{1-\beta}{GeV}
|
---|
494 | \label{eq:form16}
|
---|
495 | \end{eqnarray}
|
---|
496 |
|
---|
497 |
|
---|
498 | Note that $\Phi^{h}(E)$, $\Phi^h_0$ and $F^{h}_{eff}(E,\Theta)$ differ
|
---|
499 | from $\Phi^{\gamma}(E)$, $\Phi^{\gamma}_0$ and
|
---|
500 | $F^{\gamma}_{eff}(E,\Theta)$ by the dimension of the
|
---|
501 | solid angle, due to the additional factor $d\Omega$ in
|
---|
502 | (\ref{eq:form-12}) and (\ref{eq:form-11}).
|
---|
503 |
|
---|
504 | Like in the case of gammas from point sources, the effective area
|
---|
505 | $F^h_{eff}(E,\Theta)$ for
|
---|
506 | hadrons can be calculated by applying equation (\ref{eq:form11}) to MC
|
---|
507 | data, for which $\overline{\Phi^h}(E)$ is known :
|
---|
508 |
|
---|
509 | \begin{eqnarray}
|
---|
510 | F^{h}_{eff}(E,\Theta) &=
|
---|
511 | &\dfrac{\Delta N^{h,MC,reconstructed}(E,\Theta)}
|
---|
512 | {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{h}}(E) \cdot
|
---|
513 | (E^{up}-E^{low})}
|
---|
514 | \end{eqnarray}
|
---|
515 |
|
---|
516 | Similar to the case of gammas from point sources,
|
---|
517 | this procedure of determining $F^h_{eff}(E,\Theta)$ amounts to
|
---|
518 | performing the integrations in equation (\ref{eq:form-11}) by MC. The
|
---|
519 | precondition in the case of hadrons is that in the
|
---|
520 | MC simulation all hadron showers for
|
---|
521 | which $R^{h}(E,\Theta,F,\Omega)$ is greater than zero were
|
---|
522 | simulated. So the simulation should not only include large enough
|
---|
523 | impact parameters but also a sufficiently large range of $\Omega$ at
|
---|
524 | fixed orientation $(\Theta,\phi)$ of the telescope.
|
---|
525 |
|
---|
526 | Knowing $F^{h}_{eff}(E,\Theta)$, the hadron fluxes can be obtained
|
---|
527 | from the experimental data using equation (\ref{eq:form12}),
|
---|
528 | (\ref{eq:form13}), (\ref{eq:form15}) or (\ref{eq:form16}).
|
---|
529 |
|
---|
530 |
|
---|
531 | \subsubsection{Measurement of the absolute differential flux of gammas
|
---|
532 | from a point source by normalizing to the flux of hadronic cosmic rays}
|
---|
533 |
|
---|
534 | In section 3.2.1 a procedure was described for measuring the absolute
|
---|
535 | differential flux of gammas from a point source. The result for
|
---|
536 | $\overline{\Phi^{\gamma}_s}(E)$ depends on a reliable determination of
|
---|
537 | the collection area $F^{\gamma}_{eff}(E,\Theta)$ by MC and the
|
---|
538 | measurement of the on-time $\Delta T_{on}(\Theta)$.
|
---|
539 |
|
---|
540 | The dependence on the MC simulation may be reduced by normalizing to
|
---|
541 | the known differential flux of hadronic cosmic rays. Combining
|
---|
542 | equations (\ref{eq:form2}) and (\ref{eq:form12}), and assuming that
|
---|
543 | $\Delta T_{on}(\Theta)$ is the same for the gamma and the hadron
|
---|
544 | sample, yields
|
---|
545 |
|
---|
546 | \begin{eqnarray}
|
---|
547 | \dfrac{\overline{\Phi^{\gamma}_s}(E)}
|
---|
548 | {\overline{\Phi^{h}}(E)} &= &
|
---|
549 | \dfrac{\Delta N^{\gamma,obs}(E,\Theta)}
|
---|
550 | {\Delta N^{h,obs}(E,\Theta)} \cdot
|
---|
551 | \dfrac{F^{h}_{eff}(E,\Theta)}
|
---|
552 | {F^{\gamma}_{eff}(E,\Theta)}
|
---|
553 | \label{eq:form20}
|
---|
554 | \end{eqnarray}
|
---|
555 |
|
---|
556 | If $\overline{\Phi^{h}}(E)$ is assumed to be known from other
|
---|
557 | experiments, equation (\ref{eq:form20}) allows to determine
|
---|
558 | $\overline{\Phi^{\gamma}_s}(E)$ from
|
---|
559 | the experimental number of gamma and hadron showers using the
|
---|
560 | collection areas for gammas and hadrons from the MC. Since only the
|
---|
561 | ratio of the collection areas enters the dependence on the
|
---|
562 | MC simulation is reduced.
|
---|
563 |
|
---|
564 | If data from all zenith angles are to be used the corresponding
|
---|
565 | expression for $\overline{\Phi^{\gamma}_s}(E)$ is (see equations
|
---|
566 | (\ref{eq:form3}) and (\ref{eq:form13}))
|
---|
567 |
|
---|
568 | \begin{eqnarray}
|
---|
569 | \dfrac{\overline{\Phi^{\gamma}_s}(E)}
|
---|
570 | {\overline{\Phi^{h}}(E)} &= &
|
---|
571 | \dfrac{\sum_i \Delta N^{\gamma,obs}(E,\Theta_i)}
|
---|
572 | {\sum_i \Delta N^{h,obs}(E,\Theta_i)} \cdot
|
---|
573 | \dfrac{\sum_i \Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i)
|
---|
574 | \cdot (E^{up}_i-E^{low}_i)}
|
---|
575 | {\sum_i \Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i)
|
---|
576 | \cdot (E^{up}_i-E^{low}_i)}
|
---|
577 | \label{eq:form21}
|
---|
578 | \end{eqnarray}
|
---|
579 |
|
---|
580 | Clearly, the set of cuts defining the gamma sample is different from
|
---|
581 | the set of cuts defining the hadron sample. However,
|
---|
582 | $\Delta N^{\gamma,obs}$ and $\Delta N^{h,obs}$ can still be measured
|
---|
583 | simultaneously, in which case $\Delta T_{on}(\Theta_i)$ is the same for
|
---|
584 | the gamma and the hadron sample. Measuring gammas and hadrons
|
---|
585 | simultaneously has the advantage that variations of the detector
|
---|
586 | properties or of the atmospheric conditions during the observation
|
---|
587 | partly cancel in (\ref{eq:form20}) and (\ref{eq:form21}).
|
---|
588 |
|
---|
589 | If fixed spectral indices $\alpha$ and $\beta$ are assumed for the
|
---|
590 | differential
|
---|
591 | gamma and the hadron fluxes respectively one obtains for the ratio
|
---|
592 | $\Phi^{\gamma}_0\;/\;\Phi^h_0$
|
---|
593 | (see (\ref{eq:form5}) and (\ref{eq:form15}))
|
---|
594 |
|
---|
595 | \begin{eqnarray}
|
---|
596 | \dfrac{\Phi^{\gamma}_0}
|
---|
597 | {\Phi^{h}_0} &= &
|
---|
598 | \dfrac{\Delta N^{\gamma,obs}(E,\Theta)}
|
---|
599 | {\Delta N^{h,obs}(E,\Theta)} \cdot
|
---|
600 | \dfrac{F^{h}_{eff}(E,\Theta) \cdot
|
---|
601 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} -
|
---|
602 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]}
|
---|
603 | {F^{\gamma}_{eff}(E,\Theta)
|
---|
604 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} -
|
---|
605 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]} \cdot
|
---|
606 | \dfrac{1-\beta}{1-\alpha}
|
---|
607 | \label{eq:form22}
|
---|
608 | \end{eqnarray}
|
---|
609 |
|
---|
610 | or, when using the data from all zenith angles,
|
---|
611 | (see (\ref{eq:form6}) and (\ref{eq:form16}))
|
---|
612 |
|
---|
613 | \begin{eqnarray}
|
---|
614 | \dfrac{\Phi^{\gamma}_0}
|
---|
615 | {\Phi^{h}_0} &= &
|
---|
616 | \dfrac{\sum_i\Delta N^{\gamma,obs}(E,\Theta_i)}
|
---|
617 | {\sum_i\Delta N^{h,obs}(E,\Theta_i)} \cdot
|
---|
618 | \dfrac{\sum_i F^{h}_{eff}(E,\Theta_i) \cdot
|
---|
619 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} -
|
---|
620 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]}
|
---|
621 | {\sum_i F^{\gamma}_{eff}(E,\Theta_i)
|
---|
622 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} -
|
---|
623 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]} \cdot
|
---|
624 | \dfrac{1-\beta}{1-\alpha}
|
---|
625 | \label{eq:form23}
|
---|
626 | \end{eqnarray}
|
---|
627 |
|
---|
628 |
|
---|
629 |
|
---|
630 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
|
---|
631 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
|
---|
632 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
|
---|
633 |
|
---|
634 |
|
---|
635 | \section{MC work}
|
---|
636 |
|
---|
637 | \subsection{Overview of the MC and analysis chain}
|
---|
638 |
|
---|
639 | After a few iterations to improve the programs in speed,
|
---|
640 | reliability, ... there is a sample of available programs
|
---|
641 | to simulate the behaviour of the MAGIC telescope.
|
---|
642 | Due to the big amount of diskspace needed for this simulation
|
---|
643 | it was decided, that not only one program will generate
|
---|
644 | the MAGIC telescope, but a subsequent chain of different
|
---|
645 | programs. In figure \ref{MC_progs} you can see a overview of
|
---|
646 | the existing programs and their connections.
|
---|
647 | \begin{figure}[h]
|
---|
648 | \setlength{\unitlength}{1.cm}
|
---|
649 | \begin{picture}(18.,12.)
|
---|
650 | \put (0., 0.){\framebox(18.,12.){}}
|
---|
651 |
|
---|
652 | \put (1, 11.5){{\sl Air shower programs}}
|
---|
653 | \put (1., 10.){\framebox(3.,1.){MMCS}}
|
---|
654 | \put (2., 10.){\vector(0,-1){.9} }
|
---|
655 | \put (1., 8.){\framebox(3.,1.){reflector}}
|
---|
656 | \put (2., 8.){\vector(0,-1){.9}}
|
---|
657 |
|
---|
658 | \put (6, 10.){{\sl star background programs}}
|
---|
659 | \put (6.,8.){\framebox(3.,1.){starresponse}}
|
---|
660 | \put (6., 8.){\line(0, -1){1.5}}
|
---|
661 | \put (10.,8.){\framebox(3,1){starfieldadder}}
|
---|
662 | \put (10., 8.){\line(0, -1){1.5}}
|
---|
663 | \put (10., 6.5){\vector(-1,0){6.} }
|
---|
664 |
|
---|
665 | \put (1., 6.){\framebox(3.,1.){camera}}
|
---|
666 | \put (2., 6.){\vector(3,-1){5.} }
|
---|
667 |
|
---|
668 |
|
---|
669 |
|
---|
670 | \put (14, 11.5){{\sl real data programs}}
|
---|
671 | \put (14, 8.){\framebox(3,1){MAGIC DAQ}}
|
---|
672 | \put (15, 8.){\vector(0,-1){.9} }
|
---|
673 | \put (14, 6.){\framebox(3.,1.){MERPP}}
|
---|
674 | \put (15., 6.){\vector(-3,-1){5.} }
|
---|
675 |
|
---|
676 | \put (8.75, 3.7){\oval(4.,1.)}
|
---|
677 | \put (7., 3.5){MAGIC root file}
|
---|
678 | \put (8., 3.2){\vector(0, -1){1.0}}
|
---|
679 |
|
---|
680 | \put (7, 1.){\framebox(3.,1.){MARS}}
|
---|
681 |
|
---|
682 | \thicklines
|
---|
683 | \put (5., 11.){\line(0, -1){6.5}}
|
---|
684 | \put (13., 12.){\line(0, -1){7.5}}
|
---|
685 |
|
---|
686 | \end{picture}
|
---|
687 | \caption{Overview of the existing programs in the MC of
|
---|
688 | MAGIC.}
|
---|
689 | \label{MC_progs}
|
---|
690 | \end{figure}
|
---|
691 | A detailed description of the properties of the different programs can be found
|
---|
692 | in section \ref{sec_exist_progs}.
|
---|
693 | From that diagram you can see the following features of the simulation and
|
---|
694 | analysis chain of MAGIC.
|
---|
695 | \begin{enumerate}
|
---|
696 | \item The simulation of Air showers and the simulation of the night sky
|
---|
697 | background (NSB) is seperated.
|
---|
698 |
|
---|
699 | \item The NSB is seperated in two parts, the contribution from the starfield
|
---|
700 | and from a diffuse part.
|
---|
701 |
|
---|
702 | \item To speed up the production the starresponse program creates a databases
|
---|
703 | for stars of different magnitude.
|
---|
704 |
|
---|
705 | \item The join of air showers and NSB is done in the camera program.
|
---|
706 |
|
---|
707 | \item The analysis of MC \underline{and} real data will be done with only one program.
|
---|
708 | This program is called MARS (Magic Analysis and Reconstruction Software).
|
---|
709 | The output of the camera program from Monte Carlo data and the output of
|
---|
710 | the MERPP (MERging and PreProcessing) program for the real data are the same.
|
---|
711 | So there is no need to use different programs for the analysis. The file
|
---|
712 | generated by this program used the root package from CERN for data storage.
|
---|
713 | \end{enumerate}
|
---|
714 | In this section we will only describe the usage of the Monte Carlo programs. The
|
---|
715 | descriptions of the MERPP and MARS can be found somewhere else\footnote{Look on the
|
---|
716 | MAGIC home page for more information.}.
|
---|
717 |
|
---|
718 | \subsection{Existing programs}
|
---|
719 | \label{sec_exist_progs}
|
---|
720 | \subsubsection{MMCS - Magic Monte Carlo Simulation}
|
---|
721 |
|
---|
722 | This program is based on a CORSIKA simulation. It is used to generate
|
---|
723 | air showers for the MAGIC telecope. At the start one run of the
|
---|
724 | program, one has to define the details of the simulation.
|
---|
725 | One can specify the following parameters of an shower
|
---|
726 | (see also figure \ref{pic_shower}):
|
---|
727 | %
|
---|
728 | \begin{enumerate}
|
---|
729 | \item the type of the particles in one run ($PartID$)
|
---|
730 | \item the energy range of the particles ($E_1, E_2$)
|
---|
731 | \item the slope of the Energy spectra
|
---|
732 | \item the range of the shower core on the ground $r_{core}$.
|
---|
733 | \item the direction of the shower by setting the range of
|
---|
734 | zenith angle ($\Theta_1, \Theta_2$) and
|
---|
735 | azimuth angle ($\phi_1, \phi_2$)
|
---|
736 | \end{enumerate}
|
---|
737 | %
|
---|
738 | \begin{figure}[h]
|
---|
739 | \setlength{\unitlength}{1.5cm}
|
---|
740 | \begin{center}
|
---|
741 | \begin{picture}(9.,6.)
|
---|
742 | \put (0., 0.){\framebox(9.,6.){}}
|
---|
743 |
|
---|
744 | \thicklines
|
---|
745 | % telescope
|
---|
746 | \put (5., .5){\oval(.75, .75)[t]}
|
---|
747 | \put (3., 1.){{\sl Telesope position}}
|
---|
748 | \put (4.5, 1.){\vector(1, -1){0.5}}
|
---|
749 | % observation level
|
---|
750 | \put (.5, .5){\line(1, 0){8}}
|
---|
751 | \put (.5, .6){{\sl Observation level}}
|
---|
752 |
|
---|
753 | % air shower
|
---|
754 | \put (4. , 5.5 ){\line(2, -3){3.3}}
|
---|
755 | \put (4.5, 5.5 ){{\sl Particle Type ($PartId$)}}
|
---|
756 | \put (4.5, 5.25){{\sl Energy ($E_1 < E < E_2$)}}
|
---|
757 | \put (4.5, 5. ) {$\Theta_1 < \Theta < \Theta_2$}
|
---|
758 | \put (4.5, 4.75) {$\phi_1 < \phi < \phi_2$}
|
---|
759 | \put (7.5, .75){{\sl shower core}}
|
---|
760 |
|
---|
761 | \thinlines
|
---|
762 | \put (5., .25){\line(1,0){2.3}}
|
---|
763 | \put (6.1, .25){{\sl $r_{Core}$}}
|
---|
764 |
|
---|
765 | \put (5., .5){\line(4,3){1.571}}
|
---|
766 | \put (6., 1.35){{\sl $p$}}
|
---|
767 |
|
---|
768 | \end{picture}
|
---|
769 | \end{center}
|
---|
770 | \caption {The parameter of an shower that are possible to define
|
---|
771 | at the begin of an MMCS run.}
|
---|
772 | \label{pic_shower}
|
---|
773 | \end{figure}
|
---|
774 | Other parameters, that will be important in the analysis later,
|
---|
775 | can be calculated. I.e. the impact parameter $p$ is defined by
|
---|
776 | the direction
|
---|
777 | of the shower ($\Theta, \phi$) and the core position
|
---|
778 | ($x_{core}, y_{core}$).
|
---|
779 |
|
---|
780 | The program MMCS will track the whole shower development
|
---|
781 | through the atmosphere. All the cerenkov particles that hit a
|
---|
782 | sphere around the telesope (in the figure \ref{pic_shower}
|
---|
783 | drawn as the circle around the telecope position) are stored
|
---|
784 | on disk. It is important to recognize, that up to now no
|
---|
785 | information of the pointing of the telescope was taking into
|
---|
786 | account.
|
---|
787 | This cerenkov photons are the input for the next program,
|
---|
788 | called reflector.
|
---|
789 |
|
---|
790 |
|
---|
791 | \subsubsection{reflector}
|
---|
792 |
|
---|
793 | The aim of the reflector program is the
|
---|
794 | tracking of the cerenkov photons to the camera
|
---|
795 | of the MAGIC telescope. So this
|
---|
796 | is the point where we introduce a specific pointing of
|
---|
797 | the telescope ($\Theta_{MAGIC}, \phi_{MAGIC}$).
|
---|
798 | For all cerenkov photons the program
|
---|
799 | tests if the mirrors are hitten, calculates the
|
---|
800 | probability for the reflection and tracks them to the
|
---|
801 | mirror plane. All the photons that are hitting the
|
---|
802 | camera are written to disk (*.rfl)
|
---|
803 | with their important parameters
|
---|
804 | ($x_{camera}, y_{camera}, \lambda, t_{arrival}$).
|
---|
805 | These parameters are the input from the shower simulation
|
---|
806 | for the next program in the
|
---|
807 | MC simulation chain, the camera program.
|
---|
808 |
|
---|
809 | \subsubsection{camera}
|
---|
810 |
|
---|
811 | The camera program simulates the behaviour of the
|
---|
812 | PMTs and the electronic of the trigger and FAC system.
|
---|
813 | For each photon out of the reflector file (*.rfl) the
|
---|
814 | camera program calculates the probability to generate
|
---|
815 | an photo electron out of the photo cathode. If a photo
|
---|
816 | electrons was ejected, this will create a signal in the
|
---|
817 | trigger and FADC system of the hitted pixel.
|
---|
818 | You have to specify the
|
---|
819 | parameter of the signal shaping
|
---|
820 | (shape, Amplitude, FWHM of signal)
|
---|
821 | at the beginning of the
|
---|
822 | camera, seperatly for the trigger and the FADC system.
|
---|
823 | All signal from all photoelectrons are superimposed for
|
---|
824 | each pixel. As an example you can see the output of
|
---|
825 | the trigger and FADC system in figure \ref{fig_trigger_fadc}.
|
---|
826 | \begin{figure}[h]
|
---|
827 |
|
---|
828 | \caption{The response of one shower from the trigger (left) and
|
---|
829 | fadc system (right).}
|
---|
830 | \label{fig_trigger_fadc}
|
---|
831 | \end{figure}
|
---|
832 |
|
---|
833 | All these analog signals going into the trigger system are used
|
---|
834 | to check if for a given event a trigger signal was generated or
|
---|
835 | not. But before the start of the camera program on also has to
|
---|
836 | set a few parameters of the trigger system like:
|
---|
837 | \begin{itemize}
|
---|
838 | \item diskriminator threshold
|
---|
839 | \item mulitplicity
|
---|
840 | \item topology
|
---|
841 | \end{itemize}
|
---|
842 | With this set of parameter the camera program will analyse
|
---|
843 | if one event has triggered. For the triggered event all the FADC
|
---|
844 | content will be writen on the file (*.root). In addition all the
|
---|
845 | information about the event ($PartID, E, \Theta$,...) and
|
---|
846 | information of trigger (FirstLevel, SecondLevel, ..) are also
|
---|
847 | be written to the file.
|
---|
848 |
|
---|
849 | One of the nice features of the camera program is the possiblity
|
---|
850 | so simulate the NSB, the diffuse and the star light part of it.
|
---|
851 | But before doing this, on has to start other programs
|
---|
852 | (called starresponse and starfieldadder) that are describe
|
---|
853 | below.
|
---|
854 |
|
---|
855 | \subsubsection{starresponse}
|
---|
856 |
|
---|
857 | This program will simulate the analog response for stars of
|
---|
858 | a given brightness $B$.
|
---|
859 |
|
---|
860 |
|
---|
861 | \subsubsection{starfieldadder}
|
---|
862 |
|
---|
863 |
|
---|
864 |
|
---|
865 |
|
---|
866 |
|
---|
867 |
|
---|
868 |
|
---|
869 | \subsection{What to do}
|
---|
870 |
|
---|
871 | \begin{itemize}
|
---|
872 | \item pedestal fluctuations
|
---|
873 | \item trigger
|
---|
874 | \item rates (1st level, 2nd level, .... )
|
---|
875 | \item discriminator thresholds
|
---|
876 | \item Xmax
|
---|
877 | \item collection area
|
---|
878 | \item $\gamma$/h-Seperation
|
---|
879 | \item magnetic field studies ($\phi$-dependence)
|
---|
880 | \item rotating star field
|
---|
881 | \end{itemize}
|
---|
882 |
|
---|
883 |
|
---|
884 |
|
---|
885 | \subsection{A suggestion for an initial workplan}
|
---|
886 | We propose in the following a list of tasks whose common goal
|
---|
887 | it is to provide and use data files with a definition of data suitable for
|
---|
888 | initial studies, e.g. trigger rates, and for subsequent further
|
---|
889 | analysis in MARS, e.g. $\gamma$/h-separation. We consider this list to be
|
---|
890 | minimal and a first step only.
|
---|
891 | Given the amount of work that will have to be invested, the detailed
|
---|
892 | assumptions below should be backed up by collaboration-wide agreement; also, some
|
---|
893 | input from groups is essential, so PLEASE REACT.
|
---|
894 |
|
---|
895 | Event generation should be done with the following conditions:
|
---|
896 | \begin{itemize}
|
---|
897 | \item Signal definition: we will use the Crab, over a range of zenith angles
|
---|
898 | (define!!). A minimum of 20,000 (can we get that?) triggers will be
|
---|
899 | generated, starting from existing MMCS files;
|
---|
900 | \item Observation mode: observations are assumed off-axis,
|
---|
901 | with an offset of $\pm 0.4 \deg $ in $\Delta \beta$ along the direction of the
|
---|
902 | local azimuthal angle $\phi$,
|
---|
903 | switching sign every 500 events (see 'Assumptions' above);
|
---|
904 | \item Adding star field: adapt starfieldadder and starresponse to the
|
---|
905 | Crab. Ignore star field rotation problems for the moment, until a separate study
|
---|
906 | is available (??);
|
---|
907 | \item Pedestal fluctuations: all pixel values are smeared by a Gaussian
|
---|
908 | centered at zero with a sigma of 1.5 photoelectrons;
|
---|
909 | \item Trigger: Padova to define (!!) the grouping of pixels, the
|
---|
910 | trigger thresholds, and a method to avoid triggering on stars. We assume
|
---|
911 | only a first-level trigger.
|
---|
912 | \end{itemize}
|
---|
913 | With this event sample available, we suggest to embark on several studies,
|
---|
914 | which will help us in understanding better the MAGIC performance, and will
|
---|
915 | also pave our way into future analysis.
|
---|
916 | \begin{itemize}
|
---|
917 | \item determine trigger rates (1st level only), as function of energy and
|
---|
918 | zenith angle (also of impact parameter?);
|
---|
919 | \item determine gamma acceptance,
|
---|
920 | as function of energy and zenith angle (also of impact parameter?);
|
---|
921 | \item determine effective collection area (gammas and hadrons),
|
---|
922 | as function of energy and zenith angle (also of impact parameter?);
|
---|
923 | \item show the position of the shower maximum (Xmax);
|
---|
924 | \item start comparing methods for $\gamma$/h-separation, i.e. the generation
|
---|
925 | of ON and OFF samples from the observations;
|
---|
926 | \item start magnetic field studies ($\phi$-dependence);
|
---|
927 | \item eventually, study the effect of the rotating star field.
|
---|
928 | \end{itemize}
|
---|
929 |
|
---|
930 |
|
---|
931 |
|
---|
932 | \section{Analysis of the real data}
|
---|
933 |
|
---|
934 | \begin{thebibliography}{xxxxxxxxxxxxxxx}
|
---|
935 | \bibitem{fegan96}D.J.Fegan, Space Sci.Rev. 75 (1996)137
|
---|
936 | \bibitem{hillas85}A.M.Hillas, Proc. 19th ICRC, La Jolla 3 (1985) 445
|
---|
937 | \bibitem{konopelko99}A.Konopelko et al., Astropart. Phys. 10 (1999)
|
---|
938 | 275
|
---|
939 | \bibitem{reynolds93}P.T.Reynolds et al., ApJ 404 (1993) 206
|
---|
940 | \end{thebibliography}
|
---|
941 |
|
---|
942 |
|
---|
943 | \end{document}
|
---|
944 | %
|
---|
945 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
946 | %%% Upper-case A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
|
---|
947 | %%% Lower-case a b c d e f g h i j k l m n o p q r s t u v w x y z
|
---|
948 | %%% Digits 0 1 2 3 4 5 6 7 8 9
|
---|
949 | %%% Exclamation ! Double quote " Hash (number) #
|
---|
950 | %%% Dollar $ Percent % Ampersand &
|
---|
951 | %%% Acute accent ' Left paren ( Right paren )
|
---|
952 | %%% Asterisk * Plus + Comma ,
|
---|
953 | %%% Minus - Point . Solidus /
|
---|
954 | %%% Colon : Semicolon ; Less than <
|
---|
955 | %%% Equals = Greater than > Question mark ?
|
---|
956 | %%% At @ Left bracket [ Backslash \
|
---|
957 | %%% Right bracket ] Circumflex ^ Underscore _
|
---|
958 | %%% Grave accent ` Left brace { Vertical bar |
|
---|
959 | %%% Right brace } Tilde ~
|
---|
960 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
961 | %% Local Variables:
|
---|
962 | %% mode:latex
|
---|
963 | %% mode:font-lock
|
---|
964 | %% mode:auto-fill
|
---|
965 | %% time-stamp-line-limit:100
|
---|
966 | %% End:
|
---|
967 | %% EOF
|
---|
968 |
|
---|
969 |
|
---|
970 |
|
---|
971 |
|
---|
972 |
|
---|
973 |
|
---|
974 |
|
---|
975 |
|
---|
976 |
|
---|