| 1 | #include <LSM303.h>
|
|---|
| 2 | #include <Wire.h>
|
|---|
| 3 | #include <math.h>
|
|---|
| 4 |
|
|---|
| 5 | // Defines ////////////////////////////////////////////////////////////////
|
|---|
| 6 |
|
|---|
| 7 | // The Arduino two-wire interface uses a 7-bit number for the address,
|
|---|
| 8 | // and sets the last bit correctly based on reads and writes
|
|---|
| 9 | #define D_SA0_HIGH_ADDRESS 0b0011101 // D with SA0 high
|
|---|
| 10 | #define D_SA0_LOW_ADDRESS 0b0011110 // D with SA0 low or non-D magnetometer
|
|---|
| 11 | #define NON_D_MAG_ADDRESS 0b0011110 // D with SA0 low or non-D magnetometer
|
|---|
| 12 | #define NON_D_ACC_SA0_LOW_ADDRESS 0b0011000 // non-D accelerometer with SA0 low
|
|---|
| 13 | #define NON_D_ACC_SA0_HIGH_ADDRESS 0b0011001 // non-D accelerometer with SA0 high
|
|---|
| 14 |
|
|---|
| 15 | #define TEST_REG_NACK -1
|
|---|
| 16 |
|
|---|
| 17 | #define D_WHO_ID 0x49
|
|---|
| 18 | #define DLM_WHO_ID 0x3C
|
|---|
| 19 |
|
|---|
| 20 | // Constructors ////////////////////////////////////////////////////////////////
|
|---|
| 21 |
|
|---|
| 22 | LSM303::LSM303(void)
|
|---|
| 23 | {
|
|---|
| 24 | /*
|
|---|
| 25 | These values lead to an assumed magnetometer bias of 0.
|
|---|
| 26 | Use the Calibrate example program to determine appropriate values
|
|---|
| 27 | for your particular unit. The Heading example demonstrates how to
|
|---|
| 28 | adjust these values in your own sketch.
|
|---|
| 29 | */
|
|---|
| 30 | m_min = (LSM303::vector<int16_t>){-32767, -32767, -32767};
|
|---|
| 31 | m_max = (LSM303::vector<int16_t>){+32767, +32767, +32767};
|
|---|
| 32 |
|
|---|
| 33 | _device = device_auto;
|
|---|
| 34 |
|
|---|
| 35 | io_timeout = 0; // 0 = no timeout
|
|---|
| 36 | did_timeout = false;
|
|---|
| 37 | }
|
|---|
| 38 |
|
|---|
| 39 | // Public Methods //////////////////////////////////////////////////////////////
|
|---|
| 40 |
|
|---|
| 41 | // Did a timeout occur in readAcc(), readMag(), or read() since the last call to timeoutOccurred()?
|
|---|
| 42 | bool LSM303::timeoutOccurred()
|
|---|
| 43 | {
|
|---|
| 44 | bool tmp = did_timeout;
|
|---|
| 45 | did_timeout = false;
|
|---|
| 46 | return tmp;
|
|---|
| 47 |
|
|---|
| 48 | }
|
|---|
| 49 |
|
|---|
| 50 | void LSM303::setTimeout(unsigned int timeout)
|
|---|
| 51 | {
|
|---|
| 52 | io_timeout = timeout;
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 | unsigned int LSM303::getTimeout()
|
|---|
| 56 | {
|
|---|
| 57 | return io_timeout;
|
|---|
| 58 | }
|
|---|
| 59 |
|
|---|
| 60 | bool LSM303::init(deviceType device, sa0State sa0)
|
|---|
| 61 | {
|
|---|
| 62 | // determine device type if necessary
|
|---|
| 63 | if (device == device_auto)
|
|---|
| 64 | {
|
|---|
| 65 | if (testReg(D_SA0_HIGH_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|---|
| 66 | {
|
|---|
| 67 | // device responds to address 0011101 with D ID; it's a D with SA0 high
|
|---|
| 68 | device = device_D;
|
|---|
| 69 | sa0 = sa0_high;
|
|---|
| 70 | }
|
|---|
| 71 | else if (testReg(D_SA0_LOW_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|---|
| 72 | {
|
|---|
| 73 | // device responds to address 0011110 with D ID; it's a D with SA0 low
|
|---|
| 74 | device = device_D;
|
|---|
| 75 | sa0 = sa0_low;
|
|---|
| 76 | }
|
|---|
| 77 | // Remaining possibilities: DLHC, DLM, or DLH. DLHC seems to respond to WHO_AM_I request the
|
|---|
| 78 | // same way as DLM, even though this register isn't documented in its datasheet, so instead,
|
|---|
| 79 | // guess if it's a DLHC based on acc address (Pololu boards pull SA0 low on DLM and DLH;
|
|---|
| 80 | // DLHC doesn't have SA0 but uses same acc address as DLH/DLM with SA0 high).
|
|---|
| 81 | else if (testReg(NON_D_ACC_SA0_HIGH_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|---|
| 82 | {
|
|---|
| 83 | // device responds to address 0011001; guess that it's a DLHC
|
|---|
| 84 | device = device_DLHC;
|
|---|
| 85 | sa0 = sa0_high;
|
|---|
| 86 | }
|
|---|
| 87 | // Remaining possibilities: DLM or DLH. Check acc with SA0 low address to make sure it's responsive
|
|---|
| 88 | else if (testReg(NON_D_ACC_SA0_LOW_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|---|
| 89 | {
|
|---|
| 90 | // device responds to address 0011000 with DLM ID; guess that it's a DLM
|
|---|
| 91 | sa0 = sa0_low;
|
|---|
| 92 |
|
|---|
| 93 | // Now check WHO_AM_I_M
|
|---|
| 94 | if (testReg(NON_D_MAG_ADDRESS, WHO_AM_I_M) == DLM_WHO_ID)
|
|---|
| 95 | {
|
|---|
| 96 | device = device_DLM;
|
|---|
| 97 | }
|
|---|
| 98 | else
|
|---|
| 99 | {
|
|---|
| 100 | device = device_DLH;
|
|---|
| 101 | }
|
|---|
| 102 | }
|
|---|
| 103 | else
|
|---|
| 104 | {
|
|---|
| 105 | // device hasn't responded meaningfully, so give up
|
|---|
| 106 | return false;
|
|---|
| 107 | }
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | // determine SA0 if necessary
|
|---|
| 111 | if (sa0 == sa0_auto)
|
|---|
| 112 | {
|
|---|
| 113 | if (device == device_D)
|
|---|
| 114 | {
|
|---|
| 115 | if (testReg(D_SA0_HIGH_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|---|
| 116 | {
|
|---|
| 117 | sa0 = sa0_high;
|
|---|
| 118 | }
|
|---|
| 119 | else if (testReg(D_SA0_LOW_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|---|
| 120 | {
|
|---|
| 121 | sa0 = sa0_low;
|
|---|
| 122 | }
|
|---|
| 123 | else
|
|---|
| 124 | {
|
|---|
| 125 | // no response on either possible address; give up
|
|---|
| 126 | return false;
|
|---|
| 127 | }
|
|---|
| 128 | }
|
|---|
| 129 | else if (device == device_DLM || device == device_DLH)
|
|---|
| 130 | {
|
|---|
| 131 | if (testReg(NON_D_ACC_SA0_HIGH_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|---|
| 132 | {
|
|---|
| 133 | sa0 = sa0_high;
|
|---|
| 134 | }
|
|---|
| 135 | else if (testReg(NON_D_ACC_SA0_LOW_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|---|
| 136 | {
|
|---|
| 137 | sa0 = sa0_low;
|
|---|
| 138 | }
|
|---|
| 139 | else
|
|---|
| 140 | {
|
|---|
| 141 | // no response on either possible address; give up
|
|---|
| 142 | return false;
|
|---|
| 143 | }
|
|---|
| 144 | }
|
|---|
| 145 | }
|
|---|
| 146 |
|
|---|
| 147 | _device = device;
|
|---|
| 148 |
|
|---|
| 149 | // set device addresses and translated register addresses
|
|---|
| 150 | switch (device)
|
|---|
| 151 | {
|
|---|
| 152 | case device_D:
|
|---|
| 153 | acc_address = mag_address = (sa0 == sa0_high) ? D_SA0_HIGH_ADDRESS : D_SA0_LOW_ADDRESS;
|
|---|
| 154 | translated_regs[-OUT_X_L_M] = D_OUT_X_L_M;
|
|---|
| 155 | translated_regs[-OUT_X_H_M] = D_OUT_X_H_M;
|
|---|
| 156 | translated_regs[-OUT_Y_L_M] = D_OUT_Y_L_M;
|
|---|
| 157 | translated_regs[-OUT_Y_H_M] = D_OUT_Y_H_M;
|
|---|
| 158 | translated_regs[-OUT_Z_L_M] = D_OUT_Z_L_M;
|
|---|
| 159 | translated_regs[-OUT_Z_H_M] = D_OUT_Z_H_M;
|
|---|
| 160 | break;
|
|---|
| 161 |
|
|---|
| 162 | case device_DLHC:
|
|---|
| 163 | acc_address = NON_D_ACC_SA0_HIGH_ADDRESS; // DLHC doesn't have SA0 but uses same acc address as DLH/DLM with SA0 high
|
|---|
| 164 | mag_address = NON_D_MAG_ADDRESS;
|
|---|
| 165 | translated_regs[-OUT_X_H_M] = DLHC_OUT_X_H_M;
|
|---|
| 166 | translated_regs[-OUT_X_L_M] = DLHC_OUT_X_L_M;
|
|---|
| 167 | translated_regs[-OUT_Y_H_M] = DLHC_OUT_Y_H_M;
|
|---|
| 168 | translated_regs[-OUT_Y_L_M] = DLHC_OUT_Y_L_M;
|
|---|
| 169 | translated_regs[-OUT_Z_H_M] = DLHC_OUT_Z_H_M;
|
|---|
| 170 | translated_regs[-OUT_Z_L_M] = DLHC_OUT_Z_L_M;
|
|---|
| 171 | break;
|
|---|
| 172 |
|
|---|
| 173 | case device_DLM:
|
|---|
| 174 | acc_address = (sa0 == sa0_high) ? NON_D_ACC_SA0_HIGH_ADDRESS : NON_D_ACC_SA0_LOW_ADDRESS;
|
|---|
| 175 | mag_address = NON_D_MAG_ADDRESS;
|
|---|
| 176 | translated_regs[-OUT_X_H_M] = DLM_OUT_X_H_M;
|
|---|
| 177 | translated_regs[-OUT_X_L_M] = DLM_OUT_X_L_M;
|
|---|
| 178 | translated_regs[-OUT_Y_H_M] = DLM_OUT_Y_H_M;
|
|---|
| 179 | translated_regs[-OUT_Y_L_M] = DLM_OUT_Y_L_M;
|
|---|
| 180 | translated_regs[-OUT_Z_H_M] = DLM_OUT_Z_H_M;
|
|---|
| 181 | translated_regs[-OUT_Z_L_M] = DLM_OUT_Z_L_M;
|
|---|
| 182 | break;
|
|---|
| 183 |
|
|---|
| 184 | case device_DLH:
|
|---|
| 185 | acc_address = (sa0 == sa0_high) ? NON_D_ACC_SA0_HIGH_ADDRESS : NON_D_ACC_SA0_LOW_ADDRESS;
|
|---|
| 186 | mag_address = NON_D_MAG_ADDRESS;
|
|---|
| 187 | translated_regs[-OUT_X_H_M] = DLH_OUT_X_H_M;
|
|---|
| 188 | translated_regs[-OUT_X_L_M] = DLH_OUT_X_L_M;
|
|---|
| 189 | translated_regs[-OUT_Y_H_M] = DLH_OUT_Y_H_M;
|
|---|
| 190 | translated_regs[-OUT_Y_L_M] = DLH_OUT_Y_L_M;
|
|---|
| 191 | translated_regs[-OUT_Z_H_M] = DLH_OUT_Z_H_M;
|
|---|
| 192 | translated_regs[-OUT_Z_L_M] = DLH_OUT_Z_L_M;
|
|---|
| 193 | break;
|
|---|
| 194 | }
|
|---|
| 195 | return true;
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | /*
|
|---|
| 199 | Enables the LSM303's accelerometer and magnetometer. Also:
|
|---|
| 200 | - Sets sensor full scales (gain) to default power-on values, which are
|
|---|
| 201 | +/- 2 g for accelerometer and +/- 1.3 gauss for magnetometer
|
|---|
| 202 | (+/- 4 gauss on LSM303D).
|
|---|
| 203 | - Selects 50 Hz ODR (output data rate) for accelerometer and 7.5 Hz
|
|---|
| 204 | ODR for magnetometer (6.25 Hz on LSM303D). (These are the ODR
|
|---|
| 205 | settings for which the electrical characteristics are specified in
|
|---|
| 206 | the datasheets.)
|
|---|
| 207 | - Enables high resolution modes (if available).
|
|---|
| 208 | Note that this function will also reset other settings controlled by
|
|---|
| 209 | the registers it writes to.
|
|---|
| 210 | */
|
|---|
| 211 | void LSM303::enableDefault(void)
|
|---|
| 212 | {
|
|---|
| 213 |
|
|---|
| 214 | if (_device == device_D)
|
|---|
| 215 | {
|
|---|
| 216 | // Accelerometer
|
|---|
| 217 |
|
|---|
| 218 | // 0x57 = 0b01010111
|
|---|
| 219 | // AFS = 0 (+/- 2 g full scale)
|
|---|
| 220 | writeReg(CTRL2, 0x00);
|
|---|
| 221 |
|
|---|
| 222 | // 0x57 = 0b01010111
|
|---|
| 223 | // AODR = 0101 (50 Hz ODR); AZEN = AYEN = AXEN = 1 (all axes enabled)
|
|---|
| 224 | writeReg(CTRL1, 0x57);
|
|---|
| 225 |
|
|---|
| 226 | // Magnetometer
|
|---|
| 227 |
|
|---|
| 228 | // 0x64 = 0b01100100
|
|---|
| 229 | // M_RES = 11 (high resolution mode); M_ODR = 001 (6.25 Hz ODR)
|
|---|
| 230 | writeReg(CTRL5, 0x64);
|
|---|
| 231 |
|
|---|
| 232 | // 0x20 = 0b00100000
|
|---|
| 233 | // MFS = 01 (+/- 4 gauss full scale)
|
|---|
| 234 | writeReg(CTRL6, 0x20);
|
|---|
| 235 |
|
|---|
| 236 | // 0x00 = 0b00000000
|
|---|
| 237 | // MLP = 0 (low power mode off); MD = 00 (continuous-conversion mode)
|
|---|
| 238 | writeReg(CTRL7, 0x00);
|
|---|
| 239 | }
|
|---|
| 240 | else if (_device == device_DLHC)
|
|---|
| 241 | {
|
|---|
| 242 | // Accelerometer
|
|---|
| 243 |
|
|---|
| 244 | // 0x08 = 0b00001000
|
|---|
| 245 | // FS = 00 (+/- 2 g full scale); HR = 1 (high resolution enable)
|
|---|
| 246 | writeAccReg(CTRL_REG4_A, 0x08);
|
|---|
| 247 |
|
|---|
| 248 | // 0x47 = 0b01000111
|
|---|
| 249 | // ODR = 0100 (50 Hz ODR); LPen = 0 (normal mode); Zen = Yen = Xen = 1 (all axes enabled)
|
|---|
| 250 | writeAccReg(CTRL_REG1_A, 0x47);
|
|---|
| 251 |
|
|---|
| 252 | // Magnetometer
|
|---|
| 253 |
|
|---|
| 254 | // 0x0C = 0b00001100
|
|---|
| 255 | // DO = 011 (7.5 Hz ODR)
|
|---|
| 256 | writeMagReg(CRA_REG_M, 0x0C);
|
|---|
| 257 |
|
|---|
| 258 | // 0x20 = 0b00100000
|
|---|
| 259 | // GN = 001 (+/- 1.3 gauss full scale)
|
|---|
| 260 | writeMagReg(CRB_REG_M, 0x20);
|
|---|
| 261 |
|
|---|
| 262 | // 0x00 = 0b00000000
|
|---|
| 263 | // MD = 00 (continuous-conversion mode)
|
|---|
| 264 | writeMagReg(MR_REG_M, 0x00);
|
|---|
| 265 | }
|
|---|
| 266 | else // DLM, DLH
|
|---|
| 267 | {
|
|---|
| 268 | // Accelerometer
|
|---|
| 269 |
|
|---|
| 270 | // 0x00 = 0b00000000
|
|---|
| 271 | // FS = 00 (+/- 2 g full scale)
|
|---|
| 272 | writeAccReg(CTRL_REG4_A, 0x00);
|
|---|
| 273 |
|
|---|
| 274 | // 0x27 = 0b00100111
|
|---|
| 275 | // PM = 001 (normal mode); DR = 00 (50 Hz ODR); Zen = Yen = Xen = 1 (all axes enabled)
|
|---|
| 276 | writeAccReg(CTRL_REG1_A, 0x27);
|
|---|
| 277 |
|
|---|
| 278 | // Magnetometer
|
|---|
| 279 |
|
|---|
| 280 | // 0x0C = 0b00001100
|
|---|
| 281 | // DO = 011 (7.5 Hz ODR)
|
|---|
| 282 | writeMagReg(CRA_REG_M, 0x0C);
|
|---|
| 283 |
|
|---|
| 284 | // 0x20 = 0b00100000
|
|---|
| 285 | // GN = 001 (+/- 1.3 gauss full scale)
|
|---|
| 286 | writeMagReg(CRB_REG_M, 0x20);
|
|---|
| 287 |
|
|---|
| 288 | // 0x00 = 0b00000000
|
|---|
| 289 | // MD = 00 (continuous-conversion mode)
|
|---|
| 290 | writeMagReg(MR_REG_M, 0x00);
|
|---|
| 291 | }
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | // Writes an accelerometer register
|
|---|
| 295 | void LSM303::writeAccReg(regAddr reg, byte value)
|
|---|
| 296 | {
|
|---|
| 297 | Wire.beginTransmission(acc_address);
|
|---|
| 298 | Wire.write((byte)reg);
|
|---|
| 299 | Wire.write(value);
|
|---|
| 300 | last_status = Wire.endTransmission();
|
|---|
| 301 | }
|
|---|
| 302 |
|
|---|
| 303 | // Reads an accelerometer register
|
|---|
| 304 | byte LSM303::readAccReg(regAddr reg)
|
|---|
| 305 | {
|
|---|
| 306 | byte value;
|
|---|
| 307 |
|
|---|
| 308 | Wire.beginTransmission(acc_address);
|
|---|
| 309 | Wire.write((byte)reg);
|
|---|
| 310 | last_status = Wire.endTransmission();
|
|---|
| 311 | Wire.requestFrom(acc_address, (byte)1);
|
|---|
| 312 | value = Wire.read();
|
|---|
| 313 | Wire.endTransmission();
|
|---|
| 314 |
|
|---|
| 315 | return value;
|
|---|
| 316 | }
|
|---|
| 317 |
|
|---|
| 318 | // Writes a magnetometer register
|
|---|
| 319 | void LSM303::writeMagReg(regAddr reg, byte value)
|
|---|
| 320 | {
|
|---|
| 321 | Wire.beginTransmission(mag_address);
|
|---|
| 322 | Wire.write((byte)reg);
|
|---|
| 323 | Wire.write(value);
|
|---|
| 324 | last_status = Wire.endTransmission();
|
|---|
| 325 | }
|
|---|
| 326 |
|
|---|
| 327 | // Reads a magnetometer register
|
|---|
| 328 | byte LSM303::readMagReg(regAddr reg)
|
|---|
| 329 | {
|
|---|
| 330 | byte value;
|
|---|
| 331 |
|
|---|
| 332 | // if dummy register address (magnetometer Y/Z), look up actual translated address (based on device type)
|
|---|
| 333 | if (reg < 0)
|
|---|
| 334 | {
|
|---|
| 335 | reg = translated_regs[-reg];
|
|---|
| 336 | }
|
|---|
| 337 |
|
|---|
| 338 | Wire.beginTransmission(mag_address);
|
|---|
| 339 | Wire.write((byte)reg);
|
|---|
| 340 | last_status = Wire.endTransmission();
|
|---|
| 341 | Wire.requestFrom(mag_address, (byte)1);
|
|---|
| 342 | value = Wire.read();
|
|---|
| 343 | Wire.endTransmission();
|
|---|
| 344 |
|
|---|
| 345 | return value;
|
|---|
| 346 | }
|
|---|
| 347 |
|
|---|
| 348 | void LSM303::writeReg(regAddr reg, byte value)
|
|---|
| 349 | {
|
|---|
| 350 | // mag address == acc_address for LSM303D, so it doesn't really matter which one we use.
|
|---|
| 351 | // Use writeMagReg so it can translate OUT_[XYZ]_[HL]_M
|
|---|
| 352 | if (_device == device_D || reg < CTRL_REG1_A)
|
|---|
| 353 | {
|
|---|
| 354 | writeMagReg(reg, value);
|
|---|
| 355 | }
|
|---|
| 356 | else
|
|---|
| 357 | {
|
|---|
| 358 | writeAccReg(reg, value);
|
|---|
| 359 | }
|
|---|
| 360 | }
|
|---|
| 361 |
|
|---|
| 362 | // Note that this function will not work for reading TEMP_OUT_H_M and TEMP_OUT_L_M on the DLHC.
|
|---|
| 363 | // To read those two registers, use readMagReg() instead.
|
|---|
| 364 | byte LSM303::readReg(regAddr reg)
|
|---|
| 365 | {
|
|---|
| 366 | // mag address == acc_address for LSM303D, so it doesn't really matter which one we use.
|
|---|
| 367 | // Use writeMagReg so it can translate OUT_[XYZ]_[HL]_M
|
|---|
| 368 | if (_device == device_D || reg < CTRL_REG1_A)
|
|---|
| 369 | {
|
|---|
| 370 | return readMagReg(reg);
|
|---|
| 371 | }
|
|---|
| 372 | else
|
|---|
| 373 | {
|
|---|
| 374 | return readAccReg(reg);
|
|---|
| 375 | }
|
|---|
| 376 | }
|
|---|
| 377 |
|
|---|
| 378 | // Reads the 3 accelerometer channels and stores them in vector a
|
|---|
| 379 | void LSM303::readAcc(void)
|
|---|
| 380 | {
|
|---|
| 381 | Wire.beginTransmission(acc_address);
|
|---|
| 382 | // assert the MSB of the address to get the accelerometer
|
|---|
| 383 | // to do slave-transmit subaddress updating.
|
|---|
| 384 | Wire.write(OUT_X_L_A | (1 << 7));
|
|---|
| 385 | last_status = Wire.endTransmission();
|
|---|
| 386 | Wire.requestFrom(acc_address, (byte)6);
|
|---|
| 387 |
|
|---|
| 388 | unsigned int millis_start = millis();
|
|---|
| 389 | while (Wire.available() < 6) {
|
|---|
| 390 | if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout)
|
|---|
| 391 | {
|
|---|
| 392 | did_timeout = true;
|
|---|
| 393 | return;
|
|---|
| 394 | }
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 | byte xla = Wire.read();
|
|---|
| 398 | byte xha = Wire.read();
|
|---|
| 399 | byte yla = Wire.read();
|
|---|
| 400 | byte yha = Wire.read();
|
|---|
| 401 | byte zla = Wire.read();
|
|---|
| 402 | byte zha = Wire.read();
|
|---|
| 403 |
|
|---|
| 404 | // combine high and low bytes
|
|---|
| 405 | // This no longer drops the lowest 4 bits of the readings from the DLH/DLM/DLHC, which are always 0
|
|---|
| 406 | // (12-bit resolution, left-aligned). The D has 16-bit resolution
|
|---|
| 407 | a.x = (int16_t)(xha << 8 | xla);
|
|---|
| 408 | a.y = (int16_t)(yha << 8 | yla);
|
|---|
| 409 | a.z = (int16_t)(zha << 8 | zla);
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | // Reads the 3 magnetometer channels and stores them in vector m
|
|---|
| 413 | void LSM303::readMag(void)
|
|---|
| 414 | {
|
|---|
| 415 | Wire.beginTransmission(mag_address);
|
|---|
| 416 | // If LSM303D, assert MSB to enable subaddress updating
|
|---|
| 417 | // OUT_X_L_M comes first on D, OUT_X_H_M on others
|
|---|
| 418 | Wire.write((_device == device_D) ? translated_regs[-OUT_X_L_M] | (1 << 7) : translated_regs[-OUT_X_H_M]);
|
|---|
| 419 | last_status = Wire.endTransmission();
|
|---|
| 420 | Wire.requestFrom(mag_address, (byte)6);
|
|---|
| 421 |
|
|---|
| 422 | unsigned int millis_start = millis();
|
|---|
| 423 | while (Wire.available() < 6) {
|
|---|
| 424 | if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout)
|
|---|
| 425 | {
|
|---|
| 426 | did_timeout = true;
|
|---|
| 427 | return;
|
|---|
| 428 | }
|
|---|
| 429 | }
|
|---|
| 430 |
|
|---|
| 431 | byte xlm, xhm, ylm, yhm, zlm, zhm;
|
|---|
| 432 |
|
|---|
| 433 | if (_device == device_D)
|
|---|
| 434 | {
|
|---|
| 435 | /// D: X_L, X_H, Y_L, Y_H, Z_L, Z_H
|
|---|
| 436 | xlm = Wire.read();
|
|---|
| 437 | xhm = Wire.read();
|
|---|
| 438 | ylm = Wire.read();
|
|---|
| 439 | yhm = Wire.read();
|
|---|
| 440 | zlm = Wire.read();
|
|---|
| 441 | zhm = Wire.read();
|
|---|
| 442 | }
|
|---|
| 443 | else
|
|---|
| 444 | {
|
|---|
| 445 | // DLHC, DLM, DLH: X_H, X_L...
|
|---|
| 446 | xhm = Wire.read();
|
|---|
| 447 | xlm = Wire.read();
|
|---|
| 448 |
|
|---|
| 449 | if (_device == device_DLH)
|
|---|
| 450 | {
|
|---|
| 451 | // DLH: ...Y_H, Y_L, Z_H, Z_L
|
|---|
| 452 | yhm = Wire.read();
|
|---|
| 453 | ylm = Wire.read();
|
|---|
| 454 | zhm = Wire.read();
|
|---|
| 455 | zlm = Wire.read();
|
|---|
| 456 | }
|
|---|
| 457 | else
|
|---|
| 458 | {
|
|---|
| 459 | // DLM, DLHC: ...Z_H, Z_L, Y_H, Y_L
|
|---|
| 460 | zhm = Wire.read();
|
|---|
| 461 | zlm = Wire.read();
|
|---|
| 462 | yhm = Wire.read();
|
|---|
| 463 | ylm = Wire.read();
|
|---|
| 464 | }
|
|---|
| 465 | }
|
|---|
| 466 |
|
|---|
| 467 | // combine high and low bytes
|
|---|
| 468 | m.x = (int16_t)(xhm << 8 | xlm);
|
|---|
| 469 | m.y = (int16_t)(yhm << 8 | ylm);
|
|---|
| 470 | m.z = (int16_t)(zhm << 8 | zlm);
|
|---|
| 471 | }
|
|---|
| 472 |
|
|---|
| 473 | // Reads all 6 channels of the LSM303 and stores them in the object variables
|
|---|
| 474 | void LSM303::read(void)
|
|---|
| 475 | {
|
|---|
| 476 | readAcc();
|
|---|
| 477 | readMag();
|
|---|
| 478 | }
|
|---|
| 479 |
|
|---|
| 480 | /*
|
|---|
| 481 | Returns the angular difference in the horizontal plane between a
|
|---|
| 482 | default vector and north, in degrees.
|
|---|
| 483 |
|
|---|
| 484 | The default vector here is chosen to point along the surface of the
|
|---|
| 485 | PCB, in the direction of the top of the text on the silkscreen.
|
|---|
| 486 | This is the +X axis on the Pololu LSM303D carrier and the -Y axis on
|
|---|
| 487 | the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers.
|
|---|
| 488 | */
|
|---|
| 489 | float LSM303::heading(void)
|
|---|
| 490 | {
|
|---|
| 491 | if (_device == device_D)
|
|---|
| 492 | {
|
|---|
| 493 | return heading((vector<int>){1, 0, 0});
|
|---|
| 494 | }
|
|---|
| 495 | else
|
|---|
| 496 | {
|
|---|
| 497 | return heading((vector<int>){0, -1, 0});
|
|---|
| 498 | }
|
|---|
| 499 | }
|
|---|
| 500 |
|
|---|
| 501 | /*
|
|---|
| 502 | Returns the angular difference in the horizontal plane between the
|
|---|
| 503 | "from" vector and north, in degrees.
|
|---|
| 504 |
|
|---|
| 505 | Description of heading algorithm:
|
|---|
| 506 | Shift and scale the magnetic reading based on calibration data to find
|
|---|
| 507 | the North vector. Use the acceleration readings to determine the Up
|
|---|
| 508 | vector (gravity is measured as an upward acceleration). The cross
|
|---|
| 509 | product of North and Up vectors is East. The vectors East and North
|
|---|
| 510 | form a basis for the horizontal plane. The From vector is projected
|
|---|
| 511 | into the horizontal plane and the angle between the projected vector
|
|---|
| 512 | and horizontal north is returned.
|
|---|
| 513 | */
|
|---|
| 514 | template <typename T> float LSM303::heading(vector<T> from)
|
|---|
| 515 | {
|
|---|
| 516 | vector<int32_t> temp_m = {m.x, m.y, m.z};
|
|---|
| 517 |
|
|---|
| 518 | // subtract offset (average of min and max) from magnetometer readings
|
|---|
| 519 | temp_m.x -= ((int32_t)m_min.x + m_max.x) / 2;
|
|---|
| 520 | temp_m.y -= ((int32_t)m_min.y + m_max.y) / 2;
|
|---|
| 521 | temp_m.z -= ((int32_t)m_min.z + m_max.z) / 2;
|
|---|
| 522 |
|
|---|
| 523 | // compute E and N
|
|---|
| 524 | vector<float> E;
|
|---|
| 525 | vector<float> N;
|
|---|
| 526 | vector_cross(&temp_m, &a, &E);
|
|---|
| 527 | vector_normalize(&E);
|
|---|
| 528 | vector_cross(&a, &E, &N);
|
|---|
| 529 | vector_normalize(&N);
|
|---|
| 530 |
|
|---|
| 531 | // compute heading
|
|---|
| 532 | float heading = atan2(vector_dot(&E, &from), vector_dot(&N, &from)) * 180 / M_PI;
|
|---|
| 533 | if (heading < 0) heading += 360;
|
|---|
| 534 | return heading;
|
|---|
| 535 | }
|
|---|
| 536 |
|
|---|
| 537 | template <typename Ta, typename Tb, typename To> void LSM303::vector_cross(const vector<Ta> *a,const vector<Tb> *b, vector<To> *out)
|
|---|
| 538 | {
|
|---|
| 539 | out->x = (a->y * b->z) - (a->z * b->y);
|
|---|
| 540 | out->y = (a->z * b->x) - (a->x * b->z);
|
|---|
| 541 | out->z = (a->x * b->y) - (a->y * b->x);
|
|---|
| 542 | }
|
|---|
| 543 |
|
|---|
| 544 | template <typename Ta, typename Tb> float LSM303::vector_dot(const vector<Ta> *a, const vector<Tb> *b)
|
|---|
| 545 | {
|
|---|
| 546 | return (a->x * b->x) + (a->y * b->y) + (a->z * b->z);
|
|---|
| 547 | }
|
|---|
| 548 |
|
|---|
| 549 | void LSM303::vector_normalize(vector<float> *a)
|
|---|
| 550 | {
|
|---|
| 551 | float mag = sqrt(vector_dot(a, a));
|
|---|
| 552 | a->x /= mag;
|
|---|
| 553 | a->y /= mag;
|
|---|
| 554 | a->z /= mag;
|
|---|
| 555 | }
|
|---|
| 556 |
|
|---|
| 557 | // Private Methods //////////////////////////////////////////////////////////////
|
|---|
| 558 |
|
|---|
| 559 | int LSM303::testReg(byte address, regAddr reg)
|
|---|
| 560 | {
|
|---|
| 561 | Wire.beginTransmission(address);
|
|---|
| 562 | Wire.write((byte)reg);
|
|---|
| 563 | last_status = Wire.endTransmission();
|
|---|
| 564 |
|
|---|
| 565 | Wire.requestFrom(address, (byte)1);
|
|---|
| 566 | if (Wire.available())
|
|---|
| 567 | return Wire.read();
|
|---|
| 568 | else
|
|---|
| 569 | return TEST_REG_NACK;
|
|---|
| 570 | } |
|---|