source: trunk/FACT++/src/HeadersFTM.h@ 11495

Last change on this file since 11495 was 11469, checked in by tbretz, 13 years ago
Fixed EnableAllPixels
File size: 22.8 KB
Line 
1#ifndef FACT_HeadersFTM
2#define FACT_HeadersFTM
3
4#include <ostream>
5
6// For debugging
7#include <iostream>
8
9#include "ByteOrder.h"
10
11// ====================================================================
12
13
14namespace FTM
15{
16 enum States
17 {
18 kFtmUndefined = 0,
19
20 // FTM internal states
21 kFtmIdle = 1, ///< Trigger output disabled, configuration possible
22 kFtmConfig = 2, ///< FTM and FTUs are being reconfigured
23 kFtmRunning = 3, ///< Trigger output enabled, configuration ignored
24 kFtmCalib = 4,
25 };
26
27 enum StateMachine
28 {
29 kDisconnected = 1, //ConnectionFTM::kDisconnected,
30 kConnected ,//= ConnectionFTM::kConnected,
31 kIdle ,//= ConnectionFTM::kIdle,
32 kTakingData ,//= ConnectionFTM::kTakingData,
33 kConfiguring1,
34 kConfiguring2,
35 kConfigured,
36
37 kConfigError1 = 0x101,
38 kConfigError2 = 0x102,
39
40 kCmdTest
41 };
42
43 /// Command codes for FTM communication
44 enum Commands
45 {
46 // First word
47 kCmdRead = 0x0001, ///< Request data
48 kCmdWrite = 0x0002, ///< Send data
49 kCmdStartRun = 0x0004, ///< Enable the trigger output
50 kCmdStopRun = 0x0008, ///< Disable the trigger output
51 kCmdPing = 0x0010, ///< Ping all FTUs (get FTU list)
52 kCmdCrateReset = 0x0020, ///< Reboot (no power cycle) all FTUs and FADs of one crate
53 kCmdDisableReports = 0x0040, ///< Disable transmission of rate-reports (dynamic data)
54 kCmdToggleLed = 0xc000,
55
56 // second word for read and write
57 kCmdStaticData = 0x0001, ///< Specifies that static (configuration) data is read/written
58 kCmdDynamicData = 0x0002, ///< Specifies that dynamic data is read/written
59 kCmdRegister = 0x0004, ///< Specifies that a register is read/written
60
61 // second word for StartRun
62 kStartRun = 0x0001, ///< ...until kCmdStopRun
63 kTakeNevents = 0x0002, ///< ...fixed number of events
64
65 // second word for kCmdCrateReset
66 kResetCrate0 = 0x0001,
67 kResetCrate1 = 0x0002,
68 kResetCrate2 = 0x0004,
69 kResetCrate3 = 0x0008,
70 };
71
72
73 /// Types sent in the header of the following data
74 enum Types
75 {
76 kHeader = 0, ///< Local extension to identify a header in fCounter
77 kStaticData = 1, ///< Static (configuration) data
78 kDynamicData = 2, ///< Dynamic data (rates)
79 kFtuList = 3, ///< FTU list (answer of ping)
80 kErrorList = 4, ///< Error list (error when FTU communication failed)
81 kRegister = 5, ///< A requested register value
82 };
83
84 // --------------------------------------------------------------------
85
86 enum Delimiter
87 {
88 kDelimiterStart = 0xfb01, ///< Start delimiter send before each header
89 kDelimiterEnd = 0x04fe ///< End delimiter send after each data block
90 };
91
92 struct Header
93 {
94 uint16_t fDelimiter; ///< Start delimiter
95 uint16_t fType; ///< Type of the data to be received after the header
96 uint16_t fDataSize; ///< Size in words to be received after the header (incl end delim.)
97 uint16_t fState; ///< State of the FTM central state machine
98 uint64_t fBoardId; ///< FPGA device DNA (unique chip id)
99 uint16_t fFirmwareId; ///< Version number
100 uint32_t fTriggerCounter; ///< FTM internal counter of all trigger decision independant of trigger-line enable/disable (reset: start/stop run)
101 uint64_t fTimeStamp; ///< Internal counter (micro-seconds, reset: start/stop run)
102
103 Header() { init(*this); }
104
105 std::vector<uint16_t> HtoN() const
106 {
107 Header h(*this);
108
109 Reverse(&h.fBoardId);
110 Reverse(&h.fTriggerCounter);
111 Reverse(&h.fTimeStamp);
112
113 return htoncpy(h);
114 }
115 void operator=(const std::vector<uint16_t> &vec)
116 {
117 ntohcpy(vec, *this);
118
119 Reverse(&fBoardId);
120 Reverse(&fTriggerCounter);
121 Reverse(&fTimeStamp);
122 }
123
124 void clear() { reset(*this); }
125 void print(std::ostream &out) const;
126
127 } __attribute__((__packed__));
128
129 struct DimPassport
130 {
131 uint64_t fBoardId;
132 uint16_t fFirmwareId;
133
134 DimPassport(const Header &h) :
135 fBoardId(h.fBoardId),
136 fFirmwareId(h.fFirmwareId)
137 {
138 }
139 } __attribute__((__packed__));
140
141 struct DimTriggerCounter
142 {
143 uint64_t fTimeStamp;
144 uint32_t fTriggerCounter;
145
146 DimTriggerCounter(const Header &h) :
147 fTimeStamp(h.fTimeStamp),
148 fTriggerCounter(h.fTriggerCounter)
149 {
150 }
151 } __attribute__((__packed__));
152
153
154 struct StaticDataBoard
155 {
156 uint16_t fEnable[4]; /// enable of 4x9 pixels coded as 4x9bits
157 uint16_t fDAC[5]; /// 0-3 (A-D) Threshold of patches, 4 (H) Threshold for N out of 4 (12 bit each)
158 uint16_t fPrescaling; /// Internal readout time of FTUs for trigger counter
159
160 StaticDataBoard() { init(*this); }
161
162 void print(std::ostream &out) const;
163
164 } __attribute__((__packed__));
165
166 struct StaticData
167 {
168 enum Limits
169 {
170 kMaxMultiplicity = 40, ///< Minimum required trigger multiplicity
171 kMaxWindow = 0xf, ///< (4ns * x + 8ns) At least N (multiplicity) rising edges (trigger signal) within this window
172 kMaxDeadTime = 0xffff, ///< (4ns * x + 8ns)
173 kMaxDelayTimeMarker = 0x3ff, ///< (4ns * x + 8ns)
174 kMaxDelayTrigger = 0x3ff, ///< (4ns * x + 8ns)
175 kMaxTriggerInterval = 0x3ff, ///<
176 kMaxSequence = 0x1f,
177 kMaxDAC = 0xfff,
178 kMaxAddr = 0xfff,
179 kMaxPatchIdx = 159,
180 kMaxPixelIdx = 1439,
181 kMaskSettings = 0xf,
182 kMaskLEDs = 0xf,
183 };
184
185 enum GeneralSettings
186 {
187 kTrigger = 0x80, ///< Physics trigger decision (PhysicTrigger)
188 kPedestal = 0x40, ///< Pedestal trigger (artifical)
189 kLPint = 0x20, ///< Enable artificial trigger after light pulse (LP2)
190 kLPext = 0x10, ///< Enable trigger decision after light pulse (CalibrationTrigger, LP1)
191 kExt2 = 0x08, ///< External trigger signal 2
192 kExt1 = 0x04, ///< External trigger signal 1
193 kVeto = 0x02, ///< Veto trigger decision / artifical triggers
194 kClockConditioner = 0x01, ///< Select clock conditioner frequency (1) / time marker (0) as output
195 };
196
197 uint16_t fGeneralSettings; // Enable for different trigger types / select for TIM/ClockConditioner output (only 8 bit used)
198 uint16_t fStatusLEDs; // only 8 bit used
199 uint16_t fTriggerInterval; // [ms] Interval between two artificial triggers (no matter which type) minimum 1ms, 10 bit
200 uint16_t fTriggerSequence; // Ratio between trigger types send as artificial trigger (in this order) 3x5bit
201 uint64_t fDummy0;
202 uint16_t fMultiplicityPhysics; /// Required trigger multiplicity for physcis triggers (0-40)
203 uint16_t fMultiplicityCalib; /// Required trigger multiplicity calibration (LPext) triggers (0-40)
204 uint16_t fDelayTrigger; /// (4ns * x + 8ns) FTM internal programmable delay between trigger decision and output
205 uint16_t fDelayTimeMarker; /// (4ns * x + 8ns) FTM internal programmable delay between trigger descision and time marker output
206 uint16_t fDeadTime; /// (4ns * x + 8ns) FTM internal programmable dead time after trigger decision
207 uint32_t fClockConditioner[8]; /// R0, R1, R8, R9, R11, R13, R14, R15
208 uint16_t fWindowPhysics; /// (4ns * x + 8ns) At least N (multiplicity) rising edges (trigger signal) within this window
209 uint16_t fWindowCalib; /// (4ns * x + 8ns) At least N (multiplicity) rising edges (trigger signal) within this window
210 uint16_t fDummy1;
211
212 StaticDataBoard fBoard[4][10]; // 4 crates * 10 boards (Crate0/FTU0 == readout time of FTUs)
213
214 uint16_t fActiveFTU[4]; // 4 crates * 10 bits (FTU enable)
215
216 StaticData() { init(*this); }
217 StaticData(const std::vector<uint16_t> &vec)
218 {
219 ntohcpy(vec, *this);
220
221 for (int i=0; i<8; i++)
222 Reverse(fClockConditioner+i);
223 }
224
225 std::vector<uint16_t> HtoN() const
226 {
227 StaticData d(*this);
228 for (int i=0; i<8; i++)
229 Reverse(d.fClockConditioner+i);
230
231 return htoncpy(d);
232 }
233
234 bool operator==(const StaticData &d) const
235 {
236 return memcmp(this, &d, sizeof(StaticData))==0;
237 }
238
239 void clear() { reset(*this); }
240 void print(std::ostream &out) const;
241
242 StaticDataBoard &operator[](int i) { return fBoard[i/10][i%10]; }
243 const StaticDataBoard &operator[](int i) const { return fBoard[i/10][i%10]; }
244
245 void EnableFTU(int i) { fActiveFTU[i/10] |= (1<<(i%10)); }
246 void DisableFTU(int i) { fActiveFTU[i/10] &= ~(1<<(i%10)); }
247
248 void EnableAllFTU() { for (int i=0; i<4; i++) fActiveFTU[i] = 0x3ff; }
249 void DisableAllFTU() { for (int i=0; i<4; i++) fActiveFTU[i] = 0; }
250
251 void ToggleFTU(int i) { fActiveFTU[i/10] ^= (1<<(i%10)); }
252
253 void Enable(GeneralSettings type, bool enable)
254 {
255 if (enable)
256 fGeneralSettings |= uint16_t(type);
257 else
258 fGeneralSettings &= ~uint16_t(type); }
259
260 bool IsEnabled(GeneralSettings type) const { return fGeneralSettings&uint16_t(type); }
261
262 void EnablePixel(int idx, bool enable)
263 {
264 const int pixel = idx%9;
265 const int patch = (idx/9)%4;
266 const int board = (idx/9)/4;
267
268 uint16_t &pix = fBoard[board/10][board%10].fEnable[patch];
269
270 if (enable)
271 pix |= (1<<pixel);
272 else
273 pix &= ~(1<<pixel);
274 }
275
276 void EnableAllPixel()
277 {
278 for (int c=0; c<4; c++)
279 for (int b=0; b<10; b++)
280 for (int p=0; p<4; p++)
281 fBoard[c][b].fEnable[p] = 0x1ff;
282 }
283
284 bool Enabled(uint16_t idx) const
285 {
286 const int pixel = idx%9;
287 const int patch = (idx/9)%4;
288 const int board = (idx/9)/4;
289
290 return (fBoard[board/10][board%10].fEnable[patch]>>pixel)&1;
291 }
292
293 uint8_t GetSequencePed() const { return (fTriggerSequence>>10)&0x1f; }
294 uint8_t GetSequenceLPint() const { return (fTriggerSequence>> 5)&0x1f; }
295 uint8_t GetSequenceLPext() const { return (fTriggerSequence) &0x1f; }
296
297 void SetSequence(uint8_t ped, uint8_t lpint, uint8_t lpext)
298 {
299 fTriggerSequence = ((ped&0x1f)<<10)|((lpint&0x1f)<<5)|(lpext&0x1f);
300
301 Enable(kPedestal, ped >0);
302 Enable(kLPext, lpext>0);
303 Enable(kLPint, lpint>0);
304 }
305
306 void SetClockRegister(const uint64_t reg[])
307 {
308 for (int i=0; i<8; i++)
309 fClockConditioner[i] = reg[i];
310 }
311
312 void SetPrescaling(uint16_t val)
313 {
314 for (int c=0; c<4; c++)
315 for (int b=0; b<10; b++)
316 fBoard[c][b].fPrescaling = val;
317 }
318
319 } __attribute__((__packed__));
320
321 // DimStructures must be a multiple of two... I don't know why
322 struct DimStaticData
323 {
324 uint64_t fTimeStamp;
325 //8
326 uint16_t fGeneralSettings; // only 8 bit used
327 uint16_t fStatusLEDs; // only 8 bit used
328 uint64_t fActiveFTU; // 40 bits in row
329 //20
330 uint16_t fTriggerInterval; // only 10 bit used
331 //22
332 uint16_t fTriggerSeqLPint; // only 5bits used
333 uint16_t fTriggerSeqLPext; // only 5bits used
334 uint16_t fTriggerSeqPed; // only 5bits used
335 //28
336 uint16_t fMultiplicityPhysics; // 0-40
337 uint16_t fMultiplicityCalib; // 0-40
338 //32
339 uint16_t fWindowPhysics;
340 uint16_t fWindowCalib;
341 //36
342 uint16_t fDelayTrigger;
343 uint16_t fDelayTimeMarker;
344 uint32_t fDeadTime;
345 //44
346 uint32_t fClockConditioner[8];
347 //60
348 uint16_t fEnable[90]; // 160*9bit = 180byte
349 uint16_t fThreshold[160];
350 uint16_t fMultiplicity[40]; // N out of 4
351 uint16_t fPrescaling[40];
352 // 640+60 = 700
353
354 bool HasTrigger() const { return fGeneralSettings & StaticData::kTrigger; }
355 bool HasPedestal() const { return fGeneralSettings & StaticData::kPedestal; }
356 bool HasLPext() const { return fGeneralSettings & StaticData::kLPext; }
357 bool HasLPint() const { return fGeneralSettings & StaticData::kLPint; }
358 bool HasExt2() const { return fGeneralSettings & StaticData::kExt2; }
359 bool HasExt1() const { return fGeneralSettings & StaticData::kExt1; }
360 bool HasVeto() const { return fGeneralSettings & StaticData::kVeto; }
361 bool HasClockConditioner() const { return fGeneralSettings & StaticData::kClockConditioner; }
362
363 bool IsActive(int i) const { return fActiveFTU&(uint64_t(1)<<i); }
364 bool IsEnabled(int i) const { return fEnable[i/16]&(1<<(i%16)); }
365
366 DimStaticData() { memset(this, 0, sizeof(DimStaticData)); }
367
368 DimStaticData(const Header &h, const StaticData &d) :
369 fTimeStamp(h.fTimeStamp),
370 fGeneralSettings(d.fGeneralSettings),
371 fStatusLEDs(d.fStatusLEDs),
372 fActiveFTU( uint64_t(d.fActiveFTU[0]) |
373 (uint64_t(d.fActiveFTU[1])<<10) |
374 (uint64_t(d.fActiveFTU[2])<<20) |
375 (uint64_t(d.fActiveFTU[3])<<30)),
376 fTriggerInterval(d.fTriggerInterval),
377 fTriggerSeqLPint((d.fTriggerSequence>>5)&0x1f),
378 fTriggerSeqLPext((d.fTriggerSequence)&0x1f),
379 fTriggerSeqPed((d.fTriggerSequence>>10)&0x1f),
380 fMultiplicityPhysics(d.fMultiplicityPhysics),
381 fMultiplicityCalib(d.fMultiplicityCalib),
382 fWindowPhysics(d.fWindowPhysics*4+8),
383 fWindowCalib(d.fWindowCalib*4+8),
384 fDelayTrigger(d.fDelayTrigger*4+8),
385 fDelayTimeMarker(d.fDelayTimeMarker*4+8),
386 fDeadTime(uint32_t(d.fDeadTime)*4+8)
387 {
388 memcpy(fClockConditioner, d.fClockConditioner, sizeof(uint32_t)*8);
389
390 uint16_t src[160];
391 for (int i=0; i<40; i++)
392 {
393 for (int j=0; j<4; j++)
394 {
395 src[i*4+j] = d[i].fEnable[j];
396 fThreshold[i*4+j] = d[i].fDAC[j];
397 }
398
399 fMultiplicity[i] = d[i].fDAC[4];
400 fPrescaling[i] = d[i].fPrescaling+1;
401 }
402 bitcpy(fEnable, 90, src, 160, 9);
403 }
404
405 } __attribute__((__packed__));
406
407
408 struct DynamicDataBoard
409 {
410 uint32_t fRatePatch[4]; // Patch 0,1,2,3
411 uint32_t fRateTotal; // Sum
412
413 uint16_t fOverflow; // Patches: bits 0-3, total 4
414 uint16_t fCrcError;
415
416 void print(std::ostream &out) const;
417
418 void reverse()
419 {
420 for (int i=0; i<4; i++)
421 Reverse(fRatePatch+i);
422
423 Reverse(&fRateTotal);
424 }
425
426 uint32_t &operator[](int i) { return fRatePatch[i]; }
427
428 } __attribute__((__packed__));
429
430
431 struct DynamicData
432 {
433 uint64_t fOnTimeCounter;
434 uint16_t fTempSensor[4]; // U45, U46, U48, U49
435
436 DynamicDataBoard fBoard[4][10]; // 4 crates * 10 boards
437
438 DynamicData() { init(*this); }
439
440 std::vector<uint16_t> HtoN() const
441 {
442 DynamicData d(*this);
443
444 Reverse(&d.fOnTimeCounter);
445
446 for (int c=0; c<4; c++)
447 for (int b=0; b<10; b++)
448 d.fBoard[c][b].reverse();
449
450 return htoncpy(d);
451 }
452
453 void operator=(const std::vector<uint16_t> &vec)
454 {
455 ntohcpy(vec, *this);
456
457 Reverse(&fOnTimeCounter);
458
459 for (int c=0; c<4; c++)
460 for (int b=0; b<10; b++)
461 fBoard[c][b].reverse();
462 }
463
464 void clear() { reset(*this); }
465 void print(std::ostream &out) const;
466
467 DynamicDataBoard &operator[](int i) { return fBoard[i/10][i%10]; }
468 const DynamicDataBoard &operator[](int i) const { return fBoard[i/10][i%10]; }
469
470 } __attribute__((__packed__));
471
472
473 struct DimDynamicData
474 {
475 uint64_t fTimeStamp;
476
477 uint64_t fOnTimeCounter;
478 float fTempSensor[4];
479
480 uint32_t fRatePatch[160];
481
482 uint32_t fRateBoard[40];
483 uint16_t fRateOverflow[40];
484
485 uint16_t fCrcError[40];
486
487 DimDynamicData(const Header &h, const DynamicData &d) :
488 fTimeStamp(h.fTimeStamp),
489 fOnTimeCounter(d.fOnTimeCounter)
490 {
491 for (int i=0; i<4; i++)
492 fTempSensor[i] = d.fTempSensor[i];
493
494 for (int i=0; i<40; i++)
495 {
496 fRateBoard[i] = d[i].fRateTotal;
497 fRateOverflow[i] = d[i].fOverflow;
498 fCrcError[i] = d[i].fCrcError;
499 for (int j=0; j<4; j++)
500 fRatePatch[i*4+j] = d[i].fRatePatch[j];
501 }
502 }
503
504 } __attribute__((__packed__));
505
506
507 struct FtuResponse
508 {
509 uint16_t fPingAddr; // Number of Pings and addr (pings= see error)
510 uint64_t fDNA;
511 uint16_t fErrorCounter; //
512
513 void reverse() { Reverse(&fDNA); }
514
515 void print(std::ostream &out) const;
516
517 } __attribute__((__packed__));
518
519 struct FtuList
520 {
521 uint16_t fNumBoards; /// Total number of boards responded
522 uint16_t fNumBoardsCrate[4]; /// Num of board responded in crate 0-3
523 uint16_t fActiveFTU[4]; /// List of active FTU boards in crate 0-3
524
525 FtuResponse fFTU[4][10];
526
527 FtuList() { init(*this); }
528
529 std::vector<uint16_t> HtoN() const
530 {
531 FtuList d(*this);
532
533 for (int c=0; c<4; c++)
534 for (int b=0; b<10; b++)
535 d.fFTU[c][b].reverse();
536
537 return htoncpy(d);
538 }
539
540 void operator=(const std::vector<uint16_t> &vec)
541 {
542 ntohcpy(vec, *this);
543
544 for (int c=0; c<4; c++)
545 for (int b=0; b<10; b++)
546 fFTU[c][b].reverse();
547 }
548
549 void clear() { reset(*this); }
550 void print(std::ostream &out) const;
551
552 FtuResponse &operator[](int i) { return fFTU[i/10][i%10]; }
553 const FtuResponse &operator[](int i) const { return fFTU[i/10][i%10]; }
554
555 } __attribute__((__packed__));
556
557 struct DimFtuList
558 {
559 uint64_t fTimeStamp;
560 uint64_t fActiveFTU;
561
562 uint16_t fNumBoards; /// Number of boards answered in total
563 uint8_t fNumBoardsCrate[4]; /// Number of boards answered per crate
564
565 uint64_t fDNA[40]; /// DNA of FTU board
566 uint8_t fAddr[40]; /// Address of FTU board
567 uint8_t fPing[40]; /// Number of pings until response (same as in Error)
568
569 DimFtuList(const Header &h, const FtuList &d) :
570 fTimeStamp(h.fTimeStamp),
571 fActiveFTU( uint64_t(d.fActiveFTU[0]) |
572 (uint64_t(d.fActiveFTU[1])<<10) |
573 (uint64_t(d.fActiveFTU[2])<<20) |
574 (uint64_t(d.fActiveFTU[3])<<30)),
575 fNumBoards(d.fNumBoards)
576 {
577 for (int i=0; i<4; i++)
578 fNumBoardsCrate[i] = d.fNumBoardsCrate[i];
579
580 for (int i=0; i<40; i++)
581 {
582 fDNA[i] = d[i].fDNA;
583 fAddr[i] = d[i].fPingAddr&0x3f;
584 fPing[i] = (d[i].fPingAddr>>8)&0x3;
585 }
586 }
587
588 bool IsActive(int i) const { return fActiveFTU&(uint64_t(1)<<i); }
589
590 } __attribute__((__packed__));
591
592
593 struct Error
594 {
595 uint16_t fNumCalls; // 0=error, >1 needed repetition but successfull
596
597 uint16_t fDelimiter;
598 uint16_t fDestAddress;
599 uint16_t fSrcAddress;
600 uint16_t fFirmwareId;
601 uint16_t fCommand;
602 uint16_t fData[21];
603 uint16_t fCrcErrorCounter;
604 uint16_t fCrcCheckSum;
605
606 Error() { init(*this); }
607
608 std::vector<uint16_t> HtoN() const
609 {
610 return htoncpy(*this);
611 }
612
613 void operator=(const std::vector<uint16_t> &vec) { ntohcpy(vec, *this); }
614
615 void clear() { reset(*this); }
616
617 uint16_t &operator[](int idx) { return fData[idx]; }
618 const uint16_t &operator[](int idx) const { return fData[idx]; }
619
620 void print(std::ostream &out) const;
621
622 } __attribute__((__packed__));
623
624 struct DimError
625 {
626 uint64_t fTimeStamp;
627 Error fError;
628
629 DimError(const Header &h, const Error &e) :
630 fTimeStamp(h.fTimeStamp),
631 fError(e)
632 {
633 fError.fDestAddress = (e.fDestAddress&0x3)*10 + ((e.fDestAddress>>2)&0xf);
634 fError.fSrcAddress = (e.fSrcAddress &0x3)*10 + ((e.fSrcAddress >>2)&0xf);
635 }
636
637 } __attribute__((__packed__));
638
639 /*
640 struct Command
641 {
642 uint16_t fStartDelimiter;
643 uint16_t fCommand;
644 uint16_t fParam[3];
645
646 Command() { init(*this); }
647
648 void HtoN() { hton(*this); }
649 void NtoH() { ntoh(*this); }
650
651 void operator=(const std::vector<uint16_t> &vec) { ntohcpy(vec, *this); }
652
653 void clear() { reset(*this); }
654
655
656 } __attribute__((__packed__));
657 */
658
659 // --------------------------------------------------------------------
660
661 inline std::ostream &operator<<(std::ostream &out, const FtuResponse &h)
662 {
663 h.print(out);
664 return out;
665 }
666
667 inline std::ostream &operator<<(std::ostream &out, const Header &h)
668 {
669 h.print(out);
670 return out;
671 }
672
673
674 inline std::ostream &operator<<(std::ostream &out, const FtuList &h)
675 {
676 h.print(out);
677 return out;
678 }
679
680 inline std::ostream &operator<<(std::ostream &out, const DynamicDataBoard &h)
681 {
682 h.print(out);
683 return out;
684 }
685
686 inline std::ostream &operator<<(std::ostream &out, const DynamicData &h)
687 {
688 h.print(out);
689 return out;
690 }
691
692 inline std::ostream &operator<<(std::ostream &out, const StaticDataBoard &h)
693 {
694 h.print(out);
695 return out;
696 }
697
698 inline std::ostream &operator<<(std::ostream &out, const StaticData &h)
699 {
700 h.print(out);
701 return out;
702 }
703
704 inline std::ostream &operator<<(std::ostream &out, const Error &h)
705 {
706 h.print(out);
707 return out;
708 }
709};
710
711#endif
Note: See TracBrowser for help on using the repository browser.