| 1 | \documentclass[12pt]{article} | 
|---|
| 2 |  | 
|---|
| 3 | \usepackage{magic-tdas} | 
|---|
| 4 |  | 
|---|
| 5 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 6 | %% BEGIN DOCUMENT | 
|---|
| 7 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 8 | \begin{document} | 
|---|
| 9 |  | 
|---|
| 10 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 11 | %% Please, for the formatting just include here the standard | 
|---|
| 12 | %% elements: title, author, date, plus TDAScode | 
|---|
| 13 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 14 | \title{Outline of a standard analysis for MAGIC \\ | 
|---|
| 15 | (including Monte Carlo work)} | 
|---|
| 16 | \author{R. B\"ock, H. Kornmayer, W. Wittek\\ | 
|---|
| 17 | \texttt{h.kornmayer@web.de, wittek@mppmu.mpg.de}} | 
|---|
| 18 |  | 
|---|
| 19 | \date{ \today} | 
|---|
| 20 | \TDAScode{MAGIC-TDAS 01-??\\ ??????/W.Wittek} | 
|---|
| 21 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 22 |  | 
|---|
| 23 | %% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 24 | \maketitle | 
|---|
| 25 |  | 
|---|
| 26 | %% abstract %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 27 | \begin{abstract} | 
|---|
| 28 |  | 
|---|
| 29 | \end{abstract} | 
|---|
| 30 |  | 
|---|
| 31 | %% contents %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 32 | \thetableofcontents | 
|---|
| 33 |  | 
|---|
| 34 | \newpage | 
|---|
| 35 |  | 
|---|
| 36 | %% body %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 37 |  | 
|---|
| 38 | %------------------------------------------------------------ | 
|---|
| 39 | \section{Aim of this paper} | 
|---|
| 40 | The aim of this paper is to describe the procedure to obtain the | 
|---|
| 41 | absolute energy spectrum of a point source from the data taken with | 
|---|
| 42 | MAGIC. This includes work on Mont Carlo (MC) data and the analysis of | 
|---|
| 43 | the real data. | 
|---|
| 44 |  | 
|---|
| 45 | Various steps in the procedure will depend on details of the MC | 
|---|
| 46 | generation, on the way the real data are taken, etc.. These details | 
|---|
| 47 | have therefore to be specified, which is done in Section 2. | 
|---|
| 48 |  | 
|---|
| 49 | In Section 3 some basic definitions and formulas are collected in | 
|---|
| 50 | order to avoid any misunderstanding of the meaning of frequently | 
|---|
| 51 | used terms. | 
|---|
| 52 |  | 
|---|
| 53 | Section 4 describes the MC work and Section 5 the actual analysis of | 
|---|
| 54 | the real data. | 
|---|
| 55 |  | 
|---|
| 56 | One aim of this paper is also to define jobs for those who want to | 
|---|
| 57 | join the activities in the software developments. As will be seen, the | 
|---|
| 58 | main ingredients both for the MC work and the real data analysis are | 
|---|
| 59 | available. However, certain parts have yet to be implemented, others | 
|---|
| 60 | have to be changed, modified, improved or extended. Last not least | 
|---|
| 61 | extensive tests have to be performed. | 
|---|
| 62 |  | 
|---|
| 63 |  | 
|---|
| 64 |  | 
|---|
| 65 | \section{Assumptions} | 
|---|
| 66 | The assumptions for a 'standard analysis' listed below are the result of | 
|---|
| 67 | discussions in the software group. Some of them are rather arbitrary. | 
|---|
| 68 | They should by no means be | 
|---|
| 69 | understood as final or optimal choices. They should be considered as a | 
|---|
| 70 | starting point. As our experience with the analysis grows we may | 
|---|
| 71 | have to revise some of the assumptions. | 
|---|
| 72 |  | 
|---|
| 73 | The aim in all what follows is to define a strategy that is as simple | 
|---|
| 74 | and robust as possible. Tests that have yet to be performed will tell | 
|---|
| 75 | us whether the assumptions are reasonable and realistic. | 
|---|
| 76 |  | 
|---|
| 77 | The assumptions are : | 
|---|
| 78 |  | 
|---|
| 79 | \begin{itemize} | 
|---|
| 80 | \item Mode of observation :\\ | 
|---|
| 81 | Data are taken in the wobble mode (\cite{konopelko99}). | 
|---|
| 82 | This means that the telescope is | 
|---|
| 83 | directed not to the position of the selected source but rather to a | 
|---|
| 84 | position which has a certain offset ($\Delta\beta$) from the source | 
|---|
| 85 | position. Every 20 minutes of observation the sign of $\Delta\beta$ is | 
|---|
| 86 | changed. The two wobble positions are called wobble position 1 and 2. | 
|---|
| 87 |  | 
|---|
| 88 | $\Delta \beta$ may be chosen to be a direction difference | 
|---|
| 89 | in celestial coordinates | 
|---|
| 90 | (declination $\delta$, right ascension $\Phi$) or in local coordinates | 
|---|
| 91 | (zenith angle $\Theta$, azimuthal angle $\phi$). | 
|---|
| 92 | However the direction $\Delta \beta$ is defined, | 
|---|
| 93 | the sky region projected onto the camera is different for | 
|---|
| 94 | wobble positions 1 and 2. | 
|---|
| 95 |  | 
|---|
| 96 | If $\Delta \beta$ is defined to be a direction difference | 
|---|
| 97 | in celestial coordinates, | 
|---|
| 98 | the sky region projected onto the camera for a fixed wobble position | 
|---|
| 99 | remains the same during tracking of a source, although the sky image | 
|---|
| 100 | is rotating in the camera. | 
|---|
| 101 |  | 
|---|
| 102 | If $\Delta \beta$ is defined to be a direction difference | 
|---|
| 103 | in local coordinates, | 
|---|
| 104 | the sky region projected onto the camera is changing continuously | 
|---|
| 105 | during tracking of a source. The centers of the projected sky regions | 
|---|
| 106 | lie on a circle, which is centered at the source position. | 
|---|
| 107 |  | 
|---|
| 108 | If $\Delta \beta$ is defined to be a direction difference | 
|---|
| 109 | in the local azimuthal | 
|---|
| 110 | angle $\phi$, the center of the camera and the source position | 
|---|
| 111 | would always have the same zenith angle $\Theta$. Since the reconstruction | 
|---|
| 112 | efficiency of showers mainly depends on $\Theta$, this may be an | 
|---|
| 113 | advantage of defining $\Delta \beta$ in this way. | 
|---|
| 114 |  | 
|---|
| 115 | The wobble mode has to be understood as an alternative to taking on- | 
|---|
| 116 | and off-data in separate runs. Choosing the wobble mode thus implies | 
|---|
| 117 | that one is taking on-data only, from which also the 'off-data' have to be | 
|---|
| 118 | obtained by some procedure. | 
|---|
| 119 |  | 
|---|
| 120 | We propose to define $\Delta \beta$ as a direction difference in the | 
|---|
| 121 | local azimuthal angle $\phi$ : | 
|---|
| 122 | $\Delta \phi\;=\;\Delta \beta\;/\;sin(\Theta)$. For very small | 
|---|
| 123 | $\Theta$ ($\Theta\;<\; 1$ degree) $\Delta \beta$ should be defined | 
|---|
| 124 | differently, also to avoid large rotation speeds of the telescope. | 
|---|
| 125 |  | 
|---|
| 126 | Since the radius of the trigger area is 0.8 degrees, we propose | 
|---|
| 127 | to choose $\Delta \beta\;=\;0.4$ degrees. | 
|---|
| 128 |  | 
|---|
| 129 |  | 
|---|
| 130 | \item Pedestals :\\ | 
|---|
| 131 | Pedestals and their fluctuations are not determined from triggered | 
|---|
| 132 | showers but rather from pedestal events. The pedestal events are taken | 
|---|
| 133 | 'continuously' at a constant rate of 5 Hz. In this way the pedestals | 
|---|
| 134 | and their fluctuations are always up to date, and the presence of | 
|---|
| 135 | stars and their position in the camera can be monitored continuously. | 
|---|
| 136 |  | 
|---|
| 137 | \item Gamma/hadron separation :\\ | 
|---|
| 138 | It is assumed that it is possible to define a gamma/hadron separation | 
|---|
| 139 | which is independent | 
|---|
| 140 | \begin{itemize} | 
|---|
| 141 | \item[-] of the level of the light of the night sky (LONS) | 
|---|
| 142 | \item[-] of the presence of stars in the field of view (FOV) of the camera | 
|---|
| 143 | \item[-] of the orientation of the sky image in the camera | 
|---|
| 144 | \item[-] of the source being observed | 
|---|
| 145 | \end{itemize} | 
|---|
| 146 |  | 
|---|
| 147 | It has yet to be proven that this is possible. The corresponding | 
|---|
| 148 | procedures have to be developed, which includes a proper treatment of the | 
|---|
| 149 | pedestal fluctuations in the image analysis. | 
|---|
| 150 |  | 
|---|
| 151 | The gamma/hadron separation will be given in terms of a set of cuts | 
|---|
| 152 | (or certain conditions) on quantities which in general are not | 
|---|
| 153 | identical to the measured quantities but which are derived from them. The | 
|---|
| 154 | measurable quantities are : | 
|---|
| 155 | \begin{itemize} | 
|---|
| 156 | \item[-] the direction $\Theta$ and $\phi$ the telescope is pointing to | 
|---|
| 157 | \item[-] the image parameters | 
|---|
| 158 | \item[-] the pedestal fluctuations | 
|---|
| 159 | \end{itemize} | 
|---|
| 160 |  | 
|---|
| 161 | Under the above assumption the only dependence to be considered for | 
|---|
| 162 | the collection areas (see Section 3) is the dependence on the type of | 
|---|
| 163 | the cosmic ray particle (gamma, proton, ...), on its energy and on the | 
|---|
| 164 | zenith angle $\Theta$. | 
|---|
| 165 |  | 
|---|
| 166 | It has to be investigated whether also the azimuthal angle $\phi$ has to be | 
|---|
| 167 | taken into account, for example because of influences from the earth | 
|---|
| 168 | magnetic field. | 
|---|
| 169 |  | 
|---|
| 170 | \item Trigger condition :\\ | 
|---|
| 171 |  | 
|---|
| 172 | \item Standard analysis cuts :\\ | 
|---|
| 173 |  | 
|---|
| 174 | \end{itemize} | 
|---|
| 175 |  | 
|---|
| 176 |  | 
|---|
| 177 | \section{Definitions and formulas} | 
|---|
| 178 | \subsection{Definitions} | 
|---|
| 179 |  | 
|---|
| 180 | \begin{itemize} | 
|---|
| 181 | \item The direction $(\Theta,\phi)$ :\\ | 
|---|
| 182 | $(\Theta,\phi)$ denotes the direction the telescope is pointing to, | 
|---|
| 183 | not the position of the source being observed. | 
|---|
| 184 |  | 
|---|
| 185 | \item Image parameters :\\ | 
|---|
| 186 | The standard definition of the image parameters is assumed. See for | 
|---|
| 187 | example \cite{hillas85,fegan96,reynolds93}. We should also make use of | 
|---|
| 188 | additional parameters like asymmetry parameters, number of islands or | 
|---|
| 189 | mountains etc. | 
|---|
| 190 | \end{itemize} | 
|---|
| 191 |  | 
|---|
| 192 | Quantities which are not directly measurable, but which can be | 
|---|
| 193 | estimated from the image parameters are : | 
|---|
| 194 |  | 
|---|
| 195 | \begin{itemize} | 
|---|
| 196 | \item Impact parameter :\\ | 
|---|
| 197 | The impact parameter $p$ is defined as the vertical distance | 
|---|
| 198 | of the telescope from the shower axis. | 
|---|
| 199 |  | 
|---|
| 200 | \item The energy of the shower | 
|---|
| 201 | \end{itemize} | 
|---|
| 202 |  | 
|---|
| 203 |  | 
|---|
| 204 | \subsection{Formulas} | 
|---|
| 205 | \subsubsection{Differential gamma flux and collection area for a point source} | 
|---|
| 206 |  | 
|---|
| 207 | The differential gamma flux from a point source $s$ is given by | 
|---|
| 208 |  | 
|---|
| 209 | \begin{eqnarray} | 
|---|
| 210 | \Phi^{\gamma}_s(E)\;=\;\dfrac{dN^{\gamma}_s}{dE \cdot dF \cdot dt} | 
|---|
| 211 | \end{eqnarray} | 
|---|
| 212 |  | 
|---|
| 213 | where $dN^{\gamma}_s$ is the number of gammas from the source $s$ in | 
|---|
| 214 | the bin $dE,\;dF,\;dt$ of energy, area and time respectively. We | 
|---|
| 215 | denote the probability for 'observing' a gamma shower with energy | 
|---|
| 216 | $E$, zenith angle $\Theta$ and position $F$ in a plane perpendicular | 
|---|
| 217 | to the source direction by $R^{\gamma}(E,\Theta,F)$. Depending on the | 
|---|
| 218 | special study, the term 'observing' may mean triggering, | 
|---|
| 219 | reconstructing, etc. | 
|---|
| 220 |  | 
|---|
| 221 | The effective collection area is defined as | 
|---|
| 222 |  | 
|---|
| 223 | \begin{eqnarray} | 
|---|
| 224 | F^{\gamma}_{eff}(E,\Theta)\;  &=  &\int R^{\gamma}(E,\Theta,F)\cdot dF | 
|---|
| 225 | \label{eq:form-1} | 
|---|
| 226 | \end{eqnarray} | 
|---|
| 227 |  | 
|---|
| 228 | A side remark : The well known behaviour that the effective collection | 
|---|
| 229 | area (well above the threshold energy) is larger for larger zenith angles | 
|---|
| 230 | $\Theta$, is due to the fact that at higher $\Theta$ the distance of | 
|---|
| 231 | the shower maximum (where the majority of Cherenkov photons is | 
|---|
| 232 | emitted) from the detector is larger than at smaller $\Theta$. The | 
|---|
| 233 | area in which $R^{\gamma}(E,\Theta,F)$ contributes significantly to | 
|---|
| 234 | the integral (\ref{eq:form-1}) is therefore larger, resulting in a | 
|---|
| 235 | larger $F^{\gamma}_{eff}(E,\Theta)$. For the simulation this means, | 
|---|
| 236 | that the maximum impact parameter should be chosen larger for larger $\Theta$. | 
|---|
| 237 |  | 
|---|
| 238 | The number of $\gamma$ showers observed in the bin $\Delta \Theta$ of | 
|---|
| 239 | the zenith angle and in the bin $\Delta E$ of the energy is | 
|---|
| 240 | then : | 
|---|
| 241 |  | 
|---|
| 242 | \begin{eqnarray} | 
|---|
| 243 | \Delta N^{\gamma,obs}_s(E,\Theta)  &= &\int R^{\gamma}(E,\Theta,F) \cdot | 
|---|
| 244 | \Phi^{\gamma}_s(E) \cdot dE \cdot dF \cdot dt \\ | 
|---|
| 245 | &= &\Delta T_{on}(\Theta) \cdot | 
|---|
| 246 | \int_{\Delta E}{} \Phi^{\gamma}_s(E)\cdot | 
|---|
| 247 | F^{\gamma}_{eff}(E,\Theta)\cdot dE \\ | 
|---|
| 248 | \end{eqnarray} | 
|---|
| 249 |  | 
|---|
| 250 | Assuming that $F^{\gamma}_{eff}(E,\Theta)$ depends only weakly on $E$ | 
|---|
| 251 | in the (sufficiently small) interval $\Delta E$ gives | 
|---|
| 252 |  | 
|---|
| 253 | \begin{eqnarray} | 
|---|
| 254 | \Delta N^{\gamma,obs}_s(E,\Theta) | 
|---|
| 255 | &\approx   &\Delta T_{on}(\Theta) \cdot | 
|---|
| 256 | F^{\gamma}_{eff}(E,\Theta) \cdot \int_{\Delta E}{} | 
|---|
| 257 | \Phi^{\gamma}_s(E)\cdot dE               \label{eq:form0}\\ | 
|---|
| 258 | &\approx   &\Delta T_{on}(\Theta) \cdot | 
|---|
| 259 | F^{\gamma}_{eff}(E,\Theta) \cdot \Delta E \cdot | 
|---|
| 260 | \overline{\Phi^{\gamma}_s}(E)       \label{eq:form1} | 
|---|
| 261 | \end{eqnarray} | 
|---|
| 262 |  | 
|---|
| 263 | Here $\Delta T_{on}(\Theta)$ is the effective on-time for the data | 
|---|
| 264 | taken in the zenith angle bin $\Delta \Theta$ and $\overline{\Phi^{\gamma}_s}(E)$ | 
|---|
| 265 | is the average differential gamma flux in the energy bin $\Delta E$ : | 
|---|
| 266 |  | 
|---|
| 267 | \begin{eqnarray} | 
|---|
| 268 | \overline{\Phi^{\gamma}_s}(E)  &= | 
|---|
| 269 | &\dfrac{1}{\Delta E}\;\int_{\Delta E}{} | 
|---|
| 270 | \Phi^{\gamma}_s(E)\cdot dE | 
|---|
| 271 | \end{eqnarray} | 
|---|
| 272 |  | 
|---|
| 273 | By inverting equation (\ref{eq:form1}) and setting | 
|---|
| 274 | $\Delta E\;=\;(E^{up}-E^{low})\;\;\;\;\overline{\Phi^{\gamma}_s}(E)$ can | 
|---|
| 275 | be written as | 
|---|
| 276 |  | 
|---|
| 277 | \begin{eqnarray} | 
|---|
| 278 | \overline{\Phi^{\gamma}_s}(E)    &= | 
|---|
| 279 | &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)} | 
|---|
| 280 | {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta) \cdot | 
|---|
| 281 | (E^{up}-E^{low}) } | 
|---|
| 282 | \label{eq:form2} | 
|---|
| 283 | \end{eqnarray} | 
|---|
| 284 |  | 
|---|
| 285 | By means of equation (\ref{eq:form2}) $\overline{\Phi^{\gamma}_s}(E)$ | 
|---|
| 286 | can be determined | 
|---|
| 287 | from the measured $\Delta N^{\gamma,obs}_s(E,\Theta)$ and | 
|---|
| 288 | $\Delta T_{on}(\Theta)$, using the collection area | 
|---|
| 289 | $F^{\gamma}_{eff}(E,\Theta)$, which is obtained from MC data. | 
|---|
| 290 |  | 
|---|
| 291 | Equation (\ref{eq:form2}) is for a limited and fixed region of | 
|---|
| 292 | the zenith angle. One may calculate $\overline{\Phi^{\gamma}_s}(E)$ from the | 
|---|
| 293 | data taken at all $\Theta$, in which case | 
|---|
| 294 |  | 
|---|
| 295 | \begin{eqnarray} | 
|---|
| 296 | \overline{\Phi^{\gamma}_s}(E)    &= | 
|---|
| 297 | &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)} | 
|---|
| 298 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) | 
|---|
| 299 | \cdot (E^{up}_i-E^{low}_i) } | 
|---|
| 300 | \label{eq:form3} | 
|---|
| 301 | \end{eqnarray} | 
|---|
| 302 |  | 
|---|
| 303 | If a fixed spectral index $\alpha$ is assumed for the differential | 
|---|
| 304 | source spectrum | 
|---|
| 305 |  | 
|---|
| 306 | \begin{eqnarray} | 
|---|
| 307 | \Phi^{\gamma}_s(E)  &=  &\Phi^{\gamma}_0 \cdot | 
|---|
| 308 | \left(\dfrac{E}{GeV}\right)^{-\alpha} | 
|---|
| 309 | \end{eqnarray} | 
|---|
| 310 |  | 
|---|
| 311 | one gets | 
|---|
| 312 |  | 
|---|
| 313 | \begin{eqnarray} | 
|---|
| 314 | \int_{\Delta E}{} \Phi^{\gamma}_s(E) \cdot dE  &= | 
|---|
| 315 | &\dfrac{\Phi^{\gamma}_0}{1-\alpha} | 
|---|
| 316 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - | 
|---|
| 317 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]\cdot GeV | 
|---|
| 318 | \label{eq:form4} | 
|---|
| 319 | \end{eqnarray} | 
|---|
| 320 |  | 
|---|
| 321 | Inserting (\ref{eq:form4}) into (\ref{eq:form0}) yields | 
|---|
| 322 |  | 
|---|
| 323 | \begin{eqnarray} | 
|---|
| 324 | \Phi^{\gamma}_0    &= | 
|---|
| 325 | &\dfrac{\Delta N^{\gamma,obs}_s(E,\Theta)} | 
|---|
| 326 | {\Delta T_{on}(\Theta) \cdot F^{\gamma}_{eff}(E,\Theta) | 
|---|
| 327 | \cdot | 
|---|
| 328 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - | 
|---|
| 329 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]} | 
|---|
| 330 | \cdot \dfrac{1-\alpha}{GeV} | 
|---|
| 331 | \label{eq:form5} | 
|---|
| 332 | \end{eqnarray} | 
|---|
| 333 |  | 
|---|
| 334 | which by summing over all $\Theta$ bins gives | 
|---|
| 335 |  | 
|---|
| 336 | \begin{eqnarray} | 
|---|
| 337 | \Phi^{\gamma}_0    &= | 
|---|
| 338 | &\dfrac{\sum_i\Delta N^{\gamma,obs}_s(E,\Theta_i)} | 
|---|
| 339 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) | 
|---|
| 340 | \cdot | 
|---|
| 341 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} - | 
|---|
| 342 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]} | 
|---|
| 343 | \cdot \dfrac{1-\alpha}{GeV} | 
|---|
| 344 | \label{eq:form6} | 
|---|
| 345 | \end{eqnarray} | 
|---|
| 346 |  | 
|---|
| 347 | If applied to MC data, for which $\overline{\Phi^{\gamma}_s}(E)$ is known, | 
|---|
| 348 | equation (\ref{eq:form1}) can also be used to | 
|---|
| 349 | determine the collection area $F^{\gamma}_{eff}(E,\Theta)$ : | 
|---|
| 350 |  | 
|---|
| 351 | \begin{eqnarray} | 
|---|
| 352 | F^{\gamma}_{eff}(E,\Theta)  &= | 
|---|
| 353 | &\dfrac{\Delta N^{\gamma,MC,reconstructed}_s(E,\Theta)} | 
|---|
| 354 | {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{\gamma}_s}(E) \cdot | 
|---|
| 355 | (E^{up}-E^{low})} | 
|---|
| 356 | \end{eqnarray} | 
|---|
| 357 |  | 
|---|
| 358 | This procedure of determining $F^{\gamma}_{eff}(E,\Theta)$ amounts to | 
|---|
| 359 | performing the integration in equation (\ref{eq:form-1}) by MC. An | 
|---|
| 360 | important precondition is that in the MC simulation all gamma showers for | 
|---|
| 361 | which $R^{\gamma}(E,\Theta,F)$ is greater than zero were | 
|---|
| 362 | simulated. This means in particular that the MC simulation of gammas | 
|---|
| 363 | extends to sufficiently large impact parameters. In reality, in order to save | 
|---|
| 364 | computer time showers will be generated up to a maximum | 
|---|
| 365 | value of the impact parameter (possibly depending on the zenith | 
|---|
| 366 | angle). An appropriate correction for that has to be applied later in | 
|---|
| 367 | the analysis. | 
|---|
| 368 |  | 
|---|
| 369 | Knowing $F^{\gamma}_{eff}(E,\Theta)$, the gamma fluxes can be obtained | 
|---|
| 370 | from the experimental data using equation (\ref{eq:form2}), | 
|---|
| 371 | (\ref{eq:form3}), (\ref{eq:form5}) or (\ref{eq:form6}). | 
|---|
| 372 |  | 
|---|
| 373 | Of course, the MC data sample used for calculating | 
|---|
| 374 | $F^{\gamma}_{eff}(E,\Theta)$ and the experimental data sample used for | 
|---|
| 375 | determining the gamma flux by means of $F^{\gamma}_{eff}(E,\Theta)$ | 
|---|
| 376 | have to be defined identically in many respects : in particular | 
|---|
| 377 | the set of cuts | 
|---|
| 378 | and the offset between source position and telescope orientation have | 
|---|
| 379 | to be the same in the MC data and the experimental data sample. | 
|---|
| 380 |  | 
|---|
| 381 |  | 
|---|
| 382 |  | 
|---|
| 383 | \subsubsection{Differential flux and collection area for | 
|---|
| 384 | hadronic cosmic rays} | 
|---|
| 385 |  | 
|---|
| 386 | In the case of hadronic cosmic rays, which arrive from all directions | 
|---|
| 387 | $\Omega$, the differential hadron flux is given by | 
|---|
| 388 |  | 
|---|
| 389 | \begin{eqnarray} | 
|---|
| 390 | \Phi^{h}(E)\;=\;\dfrac{dN^{h}}{dE \cdot dF \cdot dt \cdot d\Omega} | 
|---|
| 391 | \label{eq:form-12} | 
|---|
| 392 | \end{eqnarray} | 
|---|
| 393 |  | 
|---|
| 394 |  | 
|---|
| 395 | In contrast to (\ref{eq:form-1}) the effective collection area for hadrons | 
|---|
| 396 | is defined as | 
|---|
| 397 |  | 
|---|
| 398 | \begin{eqnarray} | 
|---|
| 399 | F^{h}_{eff}(E,\Theta)\;  &=  &\int R^{h}(E,\Theta,F,\Omega)\cdot dF | 
|---|
| 400 | \cdot d\Omega | 
|---|
| 401 | \label{eq:form-11} | 
|---|
| 402 | \end{eqnarray} | 
|---|
| 403 |  | 
|---|
| 404 | Note that for a fixed orientation of the telescope $(\Theta,\phi)$ the | 
|---|
| 405 | hadrons are coming from all directions $\Omega$. The reconstruction | 
|---|
| 406 | efficiency $R^h(E,\Theta,F,\Omega)$ of hadrons therefore depends also | 
|---|
| 407 | on $\Omega$. | 
|---|
| 408 |  | 
|---|
| 409 | With the definitions (\ref{eq:form-12}) and (\ref{eq:form-11}) | 
|---|
| 410 | very similar formulas are obtained for hadrons as | 
|---|
| 411 | were derived for photons in the previous section. For clarity they | 
|---|
| 412 | are written down explicitely : | 
|---|
| 413 |  | 
|---|
| 414 | \begin{eqnarray} | 
|---|
| 415 | \Delta N^{h,obs}(E,\Theta)  &= &\int R^{h}(E,\Theta,F) \cdot | 
|---|
| 416 | \Phi^{h}(E) \cdot dE \cdot dF \cdot dt \\ | 
|---|
| 417 | &= &\Delta T_{on}(\Theta) \cdot | 
|---|
| 418 | \int_{\Delta E}{} \Phi^{h}(E)\cdot | 
|---|
| 419 | F^{h}_{eff}(E,\Theta)\cdot dE \\ | 
|---|
| 420 | \end{eqnarray} | 
|---|
| 421 |  | 
|---|
| 422 | \begin{eqnarray} | 
|---|
| 423 | \Delta N^{h,obs}(E,\Theta) | 
|---|
| 424 | &\approx   &\Delta T_{on}(\Theta) \cdot | 
|---|
| 425 | F^{h}_{eff}(E,\Theta) \cdot \int_{\Delta E}{} | 
|---|
| 426 | \Phi^{h}(E)\cdot dE               \label{eq:form10}\\ | 
|---|
| 427 | &\approx   &\Delta T_{on}(\Theta) \cdot | 
|---|
| 428 | F^{h}_{eff}(E,\Theta) \cdot \Delta E \cdot | 
|---|
| 429 | \overline{\Phi^{h}}(E)       \label{eq:form11} | 
|---|
| 430 | \end{eqnarray} | 
|---|
| 431 |  | 
|---|
| 432 |  | 
|---|
| 433 | \begin{eqnarray} | 
|---|
| 434 | \overline{\Phi^{h}}(E)  &= | 
|---|
| 435 | &\dfrac{1}{\Delta E}\;\int_{\Delta E}{} | 
|---|
| 436 | \Phi^{h}(E)\cdot dE | 
|---|
| 437 | \end{eqnarray} | 
|---|
| 438 |  | 
|---|
| 439 |  | 
|---|
| 440 | \begin{eqnarray} | 
|---|
| 441 | \overline{\Phi^{h}}(E)    &= | 
|---|
| 442 | &\dfrac{\Delta N^{h,obs}(E,\Theta)} | 
|---|
| 443 | {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta) \cdot | 
|---|
| 444 | (E^{up}-E^{low}) } | 
|---|
| 445 | \label{eq:form12} | 
|---|
| 446 | \end{eqnarray} | 
|---|
| 447 |  | 
|---|
| 448 |  | 
|---|
| 449 |  | 
|---|
| 450 | \begin{eqnarray} | 
|---|
| 451 | \overline{\Phi^{h}}(E)    &= | 
|---|
| 452 | &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)} | 
|---|
| 453 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) | 
|---|
| 454 | \cdot (E^{up}_i-E^{low}_i) } | 
|---|
| 455 | \label{eq:form13} | 
|---|
| 456 | \end{eqnarray} | 
|---|
| 457 |  | 
|---|
| 458 |  | 
|---|
| 459 | \begin{eqnarray} | 
|---|
| 460 | \Phi^{h}(E)  &=  &\Phi^{h}_0 \cdot | 
|---|
| 461 | \left(\dfrac{E}{GeV}\right)^{-\beta} | 
|---|
| 462 | \end{eqnarray} | 
|---|
| 463 |  | 
|---|
| 464 |  | 
|---|
| 465 | \begin{eqnarray} | 
|---|
| 466 | \int_{\Delta E}{} \Phi^{h}(E) \cdot dE  &= | 
|---|
| 467 | &\dfrac{\Phi^{h}_0}{1-\beta} | 
|---|
| 468 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - | 
|---|
| 469 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]\cdot GeV | 
|---|
| 470 | \label{eq:form14} | 
|---|
| 471 | \end{eqnarray} | 
|---|
| 472 |  | 
|---|
| 473 |  | 
|---|
| 474 | \begin{eqnarray} | 
|---|
| 475 | \Phi^{h}_0    &= | 
|---|
| 476 | &\dfrac{\Delta N^{h,obs}(E,\Theta)} | 
|---|
| 477 | {\Delta T_{on}(\Theta) \cdot F^{h}_{eff}(E,\Theta) | 
|---|
| 478 | \cdot | 
|---|
| 479 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - | 
|---|
| 480 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]} | 
|---|
| 481 | \cdot \dfrac{1-\beta}{GeV} | 
|---|
| 482 | \label{eq:form15} | 
|---|
| 483 | \end{eqnarray} | 
|---|
| 484 |  | 
|---|
| 485 |  | 
|---|
| 486 | \begin{eqnarray} | 
|---|
| 487 | \Phi^{h}_0    &= | 
|---|
| 488 | &\dfrac{\sum_i\Delta N^{h,obs}(E,\Theta_i)} | 
|---|
| 489 | {\sum_i\Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) | 
|---|
| 490 | \cdot | 
|---|
| 491 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} - | 
|---|
| 492 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]} | 
|---|
| 493 | \cdot \dfrac{1-\beta}{GeV} | 
|---|
| 494 | \label{eq:form16} | 
|---|
| 495 | \end{eqnarray} | 
|---|
| 496 |  | 
|---|
| 497 |  | 
|---|
| 498 | Note that $\Phi^{h}(E)$, $\Phi^h_0$ and $F^{h}_{eff}(E,\Theta)$ differ | 
|---|
| 499 | from      $\Phi^{\gamma}(E)$, $\Phi^{\gamma}_0$ and | 
|---|
| 500 | $F^{\gamma}_{eff}(E,\Theta)$ by the dimension of the | 
|---|
| 501 | solid angle, due to the additional factor $d\Omega$ in | 
|---|
| 502 | (\ref{eq:form-12}) and (\ref{eq:form-11}). | 
|---|
| 503 |  | 
|---|
| 504 | Like in the case of gammas from point sources, the effective area | 
|---|
| 505 | $F^h_{eff}(E,\Theta)$ for | 
|---|
| 506 | hadrons can be calculated by applying equation (\ref{eq:form11}) to MC | 
|---|
| 507 | data, for which $\overline{\Phi^h}(E)$ is known : | 
|---|
| 508 |  | 
|---|
| 509 | \begin{eqnarray} | 
|---|
| 510 | F^{h}_{eff}(E,\Theta)  &= | 
|---|
| 511 | &\dfrac{\Delta N^{h,MC,reconstructed}(E,\Theta)} | 
|---|
| 512 | {\Delta T_{on}(\Theta) \cdot \overline{\Phi^{h}}(E) \cdot | 
|---|
| 513 | (E^{up}-E^{low})} | 
|---|
| 514 | \end{eqnarray} | 
|---|
| 515 |  | 
|---|
| 516 | Similar to the case of gammas from point sources, | 
|---|
| 517 | this procedure of determining $F^h_{eff}(E,\Theta)$ amounts to | 
|---|
| 518 | performing the integrations in equation (\ref{eq:form-11}) by MC. The | 
|---|
| 519 | precondition in the case of hadrons is that in the | 
|---|
| 520 | MC simulation all hadron showers for | 
|---|
| 521 | which $R^{h}(E,\Theta,F,\Omega)$ is greater than zero were | 
|---|
| 522 | simulated. So the simulation should not only include large enough | 
|---|
| 523 | impact parameters but also a sufficiently large range of $\Omega$ at | 
|---|
| 524 | fixed orientation $(\Theta,\phi)$ of the telescope. | 
|---|
| 525 |  | 
|---|
| 526 | Knowing $F^{h}_{eff}(E,\Theta)$, the hadron fluxes can be obtained | 
|---|
| 527 | from the experimental data using equation (\ref{eq:form12}), | 
|---|
| 528 | (\ref{eq:form13}), (\ref{eq:form15}) or (\ref{eq:form16}). | 
|---|
| 529 |  | 
|---|
| 530 |  | 
|---|
| 531 | \subsubsection{Measurement of the absolute differential flux of gammas | 
|---|
| 532 | from a point source by normalizing to the flux of hadronic cosmic rays} | 
|---|
| 533 |  | 
|---|
| 534 | In section 3.2.1 a procedure was described for measuring the absolute | 
|---|
| 535 | differential flux of gammas from a point source. The result for | 
|---|
| 536 | $\overline{\Phi^{\gamma}_s}(E)$ depends on a reliable determination of | 
|---|
| 537 | the collection area $F^{\gamma}_{eff}(E,\Theta)$ by MC and the | 
|---|
| 538 | measurement of the on-time $\Delta T_{on}(\Theta)$. | 
|---|
| 539 |  | 
|---|
| 540 | The dependence on the MC simulation may be reduced by normalizing to | 
|---|
| 541 | the known differential flux of hadronic cosmic rays. Combining | 
|---|
| 542 | equations (\ref{eq:form2}) and (\ref{eq:form12}), and assuming that | 
|---|
| 543 | $\Delta T_{on}(\Theta)$ is the same for the gamma and the hadron | 
|---|
| 544 | sample, yields | 
|---|
| 545 |  | 
|---|
| 546 | \begin{eqnarray} | 
|---|
| 547 | \dfrac{\overline{\Phi^{\gamma}_s}(E)} | 
|---|
| 548 | {\overline{\Phi^{h}}(E)}          &=  & | 
|---|
| 549 | \dfrac{\Delta N^{\gamma,obs}(E,\Theta)} | 
|---|
| 550 | {\Delta N^{h,obs}(E,\Theta)}      \cdot | 
|---|
| 551 | \dfrac{F^{h}_{eff}(E,\Theta)} | 
|---|
| 552 | {F^{\gamma}_{eff}(E,\Theta)} | 
|---|
| 553 | \label{eq:form20} | 
|---|
| 554 | \end{eqnarray} | 
|---|
| 555 |  | 
|---|
| 556 | If $\overline{\Phi^{h}}(E)$ is assumed to be known from other | 
|---|
| 557 | experiments, equation (\ref{eq:form20}) allows to determine | 
|---|
| 558 | $\overline{\Phi^{\gamma}_s}(E)$ from | 
|---|
| 559 | the experimental number of gamma and hadron showers using the | 
|---|
| 560 | collection areas for gammas and hadrons from the MC. Since only the | 
|---|
| 561 | ratio of the collection areas enters the dependence on the | 
|---|
| 562 | MC simulation is reduced. | 
|---|
| 563 |  | 
|---|
| 564 | If data from all zenith angles are to be used the corresponding | 
|---|
| 565 | expression for $\overline{\Phi^{\gamma}_s}(E)$ is (see equations | 
|---|
| 566 | (\ref{eq:form3}) and (\ref{eq:form13})) | 
|---|
| 567 |  | 
|---|
| 568 | \begin{eqnarray} | 
|---|
| 569 | \dfrac{\overline{\Phi^{\gamma}_s}(E)} | 
|---|
| 570 | {\overline{\Phi^{h}}(E)}          &=  & | 
|---|
| 571 | \dfrac{\sum_i \Delta N^{\gamma,obs}(E,\Theta_i)} | 
|---|
| 572 | {\sum_i \Delta N^{h,obs}(E,\Theta_i)}      \cdot | 
|---|
| 573 | \dfrac{\sum_i \Delta T_{on}(\Theta_i) \cdot F^{h}_{eff}(E,\Theta_i) | 
|---|
| 574 | \cdot (E^{up}_i-E^{low}_i)} | 
|---|
| 575 | {\sum_i \Delta T_{on}(\Theta_i) \cdot F^{\gamma}_{eff}(E,\Theta_i) | 
|---|
| 576 | \cdot (E^{up}_i-E^{low}_i)} | 
|---|
| 577 | \label{eq:form21} | 
|---|
| 578 | \end{eqnarray} | 
|---|
| 579 |  | 
|---|
| 580 | Clearly, the set of cuts defining the gamma sample is different from | 
|---|
| 581 | the set of cuts defining the hadron sample. However, | 
|---|
| 582 | $\Delta N^{\gamma,obs}$ and $\Delta N^{h,obs}$ can still be measured | 
|---|
| 583 | simultaneously, in which case $\Delta T_{on}(\Theta_i)$ is the same for | 
|---|
| 584 | the gamma and the hadron sample. Measuring gammas and hadrons | 
|---|
| 585 | simultaneously has the advantage that variations of the detector | 
|---|
| 586 | properties or of the atmospheric conditions during the observation | 
|---|
| 587 | partly cancel in (\ref{eq:form20}) and (\ref{eq:form21}). | 
|---|
| 588 |  | 
|---|
| 589 | If fixed spectral indices $\alpha$ and $\beta$ are assumed for the | 
|---|
| 590 | differential | 
|---|
| 591 | gamma and the hadron fluxes respectively one obtains for the ratio | 
|---|
| 592 | $\Phi^{\gamma}_0\;/\;\Phi^h_0$ | 
|---|
| 593 | (see (\ref{eq:form5}) and (\ref{eq:form15})) | 
|---|
| 594 |  | 
|---|
| 595 | \begin{eqnarray} | 
|---|
| 596 | \dfrac{\Phi^{\gamma}_0} | 
|---|
| 597 | {\Phi^{h}_0}          &=  & | 
|---|
| 598 | \dfrac{\Delta N^{\gamma,obs}(E,\Theta)} | 
|---|
| 599 | {\Delta N^{h,obs}(E,\Theta)}      \cdot | 
|---|
| 600 | \dfrac{F^{h}_{eff}(E,\Theta) \cdot | 
|---|
| 601 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\alpha} - | 
|---|
| 602 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\alpha} \right]} | 
|---|
| 603 | {F^{\gamma}_{eff}(E,\Theta) | 
|---|
| 604 | \left[ \left(\dfrac{E^{up}} {GeV}\right)^{1-\beta} - | 
|---|
| 605 | \left(\dfrac{E^{low}}{GeV}\right)^{1-\beta} \right]} \cdot | 
|---|
| 606 | \dfrac{1-\beta}{1-\alpha} | 
|---|
| 607 | \label{eq:form22} | 
|---|
| 608 | \end{eqnarray} | 
|---|
| 609 |  | 
|---|
| 610 | or, when using the data from all zenith angles, | 
|---|
| 611 | (see (\ref{eq:form6}) and (\ref{eq:form16})) | 
|---|
| 612 |  | 
|---|
| 613 | \begin{eqnarray} | 
|---|
| 614 | \dfrac{\Phi^{\gamma}_0} | 
|---|
| 615 | {\Phi^{h}_0}          &=  & | 
|---|
| 616 | \dfrac{\sum_i\Delta N^{\gamma,obs}(E,\Theta_i)} | 
|---|
| 617 | {\sum_i\Delta N^{h,obs}(E,\Theta_i)}      \cdot | 
|---|
| 618 | \dfrac{\sum_i F^{h}_{eff}(E,\Theta_i) \cdot | 
|---|
| 619 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\alpha} - | 
|---|
| 620 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\alpha} \right]} | 
|---|
| 621 | {\sum_i F^{\gamma}_{eff}(E,\Theta_i) | 
|---|
| 622 | \left[ \left(\dfrac{E^{up}_i} {GeV}\right)^{1-\beta} - | 
|---|
| 623 | \left(\dfrac{E^{low}_i}{GeV}\right)^{1-\beta} \right]} \cdot | 
|---|
| 624 | \dfrac{1-\beta}{1-\alpha} | 
|---|
| 625 | \label{eq:form23} | 
|---|
| 626 | \end{eqnarray} | 
|---|
| 627 |  | 
|---|
| 628 |  | 
|---|
| 629 |  | 
|---|
| 630 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& | 
|---|
| 631 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& | 
|---|
| 632 | % &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& | 
|---|
| 633 |  | 
|---|
| 634 |  | 
|---|
| 635 | \section{MC work} | 
|---|
| 636 |  | 
|---|
| 637 | \subsection{Overview of the MC and analysis chain} | 
|---|
| 638 |  | 
|---|
| 639 | After a few iterations to improve the programs in speed, | 
|---|
| 640 | reliability, ... there is a sample of available programs | 
|---|
| 641 | to simulate the behaviour of the MAGIC telescope. | 
|---|
| 642 | Due to the big amount of diskspace needed for this simulation | 
|---|
| 643 | it was decided, that not only one program will generate | 
|---|
| 644 | the MAGIC telescope, but a subsequent chain of different | 
|---|
| 645 | programs. In figure \ref{MC_progs} you can see a overview of | 
|---|
| 646 | the existing programs and their connections. | 
|---|
| 647 | \begin{figure}[h] | 
|---|
| 648 | \setlength{\unitlength}{1.cm} | 
|---|
| 649 | \begin{picture}(18.,12.) | 
|---|
| 650 | \put (0., 0.){\framebox(18.,12.){}} | 
|---|
| 651 |  | 
|---|
| 652 | \put (1, 11.5){{\sl Air shower programs}} | 
|---|
| 653 | \put (1., 10.){\framebox(3.,1.){MMCS}} | 
|---|
| 654 | \put (2., 10.){\vector(0,-1){.9} } | 
|---|
| 655 | \put (1., 8.){\framebox(3.,1.){reflector}} | 
|---|
| 656 | \put (2., 8.){\vector(0,-1){.9}} | 
|---|
| 657 |  | 
|---|
| 658 | \put (6, 10.){{\sl star background programs}} | 
|---|
| 659 | \put (6.,8.){\framebox(3.,1.){starresponse}} | 
|---|
| 660 | \put (6., 8.){\line(0, -1){1.5}} | 
|---|
| 661 | \put (10.,8.){\framebox(3,1){starfieldadder}} | 
|---|
| 662 | \put (10., 8.){\line(0, -1){1.5}} | 
|---|
| 663 | \put (10., 6.5){\vector(-1,0){6.} } | 
|---|
| 664 |  | 
|---|
| 665 | \put (1., 6.){\framebox(3.,1.){camera}} | 
|---|
| 666 | \put (2., 6.){\vector(3,-1){5.} } | 
|---|
| 667 |  | 
|---|
| 668 |  | 
|---|
| 669 |  | 
|---|
| 670 | \put (14, 11.5){{\sl real data programs}} | 
|---|
| 671 | \put (14, 8.){\framebox(3,1){MAGIC DAQ}} | 
|---|
| 672 | \put (15, 8.){\vector(0,-1){.9} } | 
|---|
| 673 | \put (14, 6.){\framebox(3.,1.){MERPP}} | 
|---|
| 674 | \put (15., 6.){\vector(-3,-1){5.} } | 
|---|
| 675 |  | 
|---|
| 676 | \put (8.75, 3.7){\oval(4.,1.)} | 
|---|
| 677 | \put (7., 3.5){MAGIC root file} | 
|---|
| 678 | \put (8., 3.2){\vector(0, -1){1.0}} | 
|---|
| 679 |  | 
|---|
| 680 | \put (7, 1.){\framebox(3.,1.){MARS}} | 
|---|
| 681 |  | 
|---|
| 682 | \thicklines | 
|---|
| 683 | \put (5., 11.){\line(0, -1){6.5}} | 
|---|
| 684 | \put (13., 12.){\line(0, -1){7.5}} | 
|---|
| 685 |  | 
|---|
| 686 | \end{picture} | 
|---|
| 687 | \caption{Overview of the existing programs in the MC of | 
|---|
| 688 | MAGIC.} | 
|---|
| 689 | \label{MC_progs} | 
|---|
| 690 | \end{figure} | 
|---|
| 691 | A detailed description of the properties of the different programs can be found | 
|---|
| 692 | in section \ref{sec_exist_progs}. | 
|---|
| 693 | From that diagram you can see the following features of the simulation and | 
|---|
| 694 | analysis chain of MAGIC. | 
|---|
| 695 | \begin{enumerate} | 
|---|
| 696 | \item The simulation of Air showers and the simulation of the night sky | 
|---|
| 697 | background (NSB) is seperated. | 
|---|
| 698 |  | 
|---|
| 699 | \item The NSB is seperated in two parts, the contribution from the starfield | 
|---|
| 700 | and from a diffuse part. | 
|---|
| 701 |  | 
|---|
| 702 | \item To speed up the production the starresponse program creates a databases | 
|---|
| 703 | for stars of different magnitude. | 
|---|
| 704 |  | 
|---|
| 705 | \item The join of air showers and NSB is done in the camera program. | 
|---|
| 706 |  | 
|---|
| 707 | \item The analysis of MC \underline{and} real data will be done with only one program. | 
|---|
| 708 | This program is called MARS (Magic Analysis and Reconstruction Software). | 
|---|
| 709 | The output of the camera program from Monte Carlo data and the output of | 
|---|
| 710 | the MERPP (MERging and PreProcessing) program for the real data are the same. | 
|---|
| 711 | So there is no need to use different programs for the analysis. The file | 
|---|
| 712 | generated by this program used the root package from CERN for data storage. | 
|---|
| 713 | \end{enumerate} | 
|---|
| 714 | In this section we will only describe the usage of the Monte Carlo programs. The | 
|---|
| 715 | descriptions of the MERPP and MARS can be found somewhere else\footnote{Look on the | 
|---|
| 716 | MAGIC home page for more information.}. | 
|---|
| 717 |  | 
|---|
| 718 | \subsection{Existing programs} | 
|---|
| 719 | \label{sec_exist_progs} | 
|---|
| 720 | \subsubsection{MMCS - Magic Monte Carlo Simulation} | 
|---|
| 721 |  | 
|---|
| 722 | This program is based on a CORSIKA simulation. It is used to generate | 
|---|
| 723 | air showers for the MAGIC telecope. At the start one run of the | 
|---|
| 724 | program, one has to define the details of the simulation. | 
|---|
| 725 | One can specify the following parameters of an shower | 
|---|
| 726 | (see also figure \ref{pic_shower}): | 
|---|
| 727 | % | 
|---|
| 728 | \begin{enumerate} | 
|---|
| 729 | \item the type of the particles in one run ($PartID$) | 
|---|
| 730 | \item the energy range of the particles ($E_1, E_2$) | 
|---|
| 731 | \item the slope of the Energy spectra | 
|---|
| 732 | \item the range of the shower core on the ground $r_{core}$. | 
|---|
| 733 | \item the direction of the shower by setting the range of | 
|---|
| 734 | zenith angle ($\Theta_1, \Theta_2$) and | 
|---|
| 735 | azimuth angle  ($\phi_1, \phi_2$) | 
|---|
| 736 | \end{enumerate} | 
|---|
| 737 | % | 
|---|
| 738 | \begin{figure}[h] | 
|---|
| 739 | \setlength{\unitlength}{1.5cm} | 
|---|
| 740 | \begin{center} | 
|---|
| 741 | \begin{picture}(9.,6.) | 
|---|
| 742 | \put (0., 0.){\framebox(9.,6.){}} | 
|---|
| 743 |  | 
|---|
| 744 | \thicklines | 
|---|
| 745 | % telescope | 
|---|
| 746 | \put (5., .5){\oval(.75, .75)[t]} | 
|---|
| 747 | \put (3., 1.){{\sl Telesope position}} | 
|---|
| 748 | \put (4.5, 1.){\vector(1, -1){0.5}} | 
|---|
| 749 | % observation level | 
|---|
| 750 | \put (.5, .5){\line(1, 0){8}} | 
|---|
| 751 | \put (.5, .6){{\sl Observation level}} | 
|---|
| 752 |  | 
|---|
| 753 | % air shower | 
|---|
| 754 | \put (4. , 5.5 ){\line(2, -3){3.3}} | 
|---|
| 755 | \put (4.5, 5.5 ){{\sl Particle Type ($PartId$)}} | 
|---|
| 756 | \put (4.5, 5.25){{\sl Energy ($E_1 < E < E_2$)}} | 
|---|
| 757 | \put (4.5, 5.  ) {$\Theta_1 < \Theta < \Theta_2$} | 
|---|
| 758 | \put (4.5, 4.75) {$\phi_1 < \phi < \phi_2$} | 
|---|
| 759 | \put (7.5, .75){{\sl shower core}} | 
|---|
| 760 |  | 
|---|
| 761 | \thinlines | 
|---|
| 762 | \put (5., .25){\line(1,0){2.3}} | 
|---|
| 763 | \put (6.1, .25){{\sl $r_{Core}$}} | 
|---|
| 764 |  | 
|---|
| 765 | \put (5., .5){\line(4,3){1.571}} | 
|---|
| 766 | \put (6., 1.35){{\sl $p$}} | 
|---|
| 767 |  | 
|---|
| 768 | \end{picture} | 
|---|
| 769 | \end{center} | 
|---|
| 770 | \caption {The parameter of an shower that are possible to define | 
|---|
| 771 | at the begin of an MMCS run.} | 
|---|
| 772 | \label{pic_shower} | 
|---|
| 773 | \end{figure} | 
|---|
| 774 | Other parameters, that will be important in the analysis later, | 
|---|
| 775 | can be calculated. I.e. the impact parameter $p$ is defined by | 
|---|
| 776 | the direction | 
|---|
| 777 | of the shower ($\Theta, \phi$) and the core position | 
|---|
| 778 | ($x_{core}, y_{core}$). | 
|---|
| 779 |  | 
|---|
| 780 | The program MMCS will track the whole shower development | 
|---|
| 781 | through the atmosphere. All the cerenkov particles that hit a | 
|---|
| 782 | sphere around the telesope (in the figure \ref{pic_shower} | 
|---|
| 783 | drawn as the circle around the telecope position) are stored | 
|---|
| 784 | on disk. It is important to recognize, that up to now no | 
|---|
| 785 | information of the pointing of the telescope was taking into | 
|---|
| 786 | account. | 
|---|
| 787 | This cerenkov photons are the input for the next program, | 
|---|
| 788 | called reflector. | 
|---|
| 789 |  | 
|---|
| 790 |  | 
|---|
| 791 | \subsubsection{reflector} | 
|---|
| 792 |  | 
|---|
| 793 | The aim of the reflector program is the | 
|---|
| 794 | tracking of the cerenkov photons to the camera | 
|---|
| 795 | of the MAGIC telescope. So this | 
|---|
| 796 | is the point where we introduce a specific pointing of | 
|---|
| 797 | the telescope ($\Theta_{MAGIC}, \phi_{MAGIC}$). | 
|---|
| 798 | For all cerenkov photons the program | 
|---|
| 799 | tests if the mirrors are hitten, calculates the | 
|---|
| 800 | probability for the reflection and tracks them to the | 
|---|
| 801 | mirror plane. All the photons that are hitting the | 
|---|
| 802 | camera are written to disk (*.rfl) | 
|---|
| 803 | with their important parameters | 
|---|
| 804 | ($x_{camera}, y_{camera}, \lambda, t_{arrival}$). | 
|---|
| 805 | These parameters are the input from the shower simulation | 
|---|
| 806 | for the next program in the | 
|---|
| 807 | MC simulation chain, the camera program. | 
|---|
| 808 |  | 
|---|
| 809 | \subsubsection{camera} | 
|---|
| 810 |  | 
|---|
| 811 | The camera program simulates the behaviour of the | 
|---|
| 812 | PMTs and the electronic of the trigger and FAC system. | 
|---|
| 813 | For each photon out of the reflector file (*.rfl) the | 
|---|
| 814 | camera program calculates the probability to generate | 
|---|
| 815 | an photo electron out of the photo cathode. If a photo | 
|---|
| 816 | electrons was ejected, this will create a signal in the | 
|---|
| 817 | trigger and FADC system of the hitted pixel. | 
|---|
| 818 | You have to specify the | 
|---|
| 819 | parameter of the signal shaping | 
|---|
| 820 | (shape, Amplitude, FWHM of signal) | 
|---|
| 821 | at the beginning of the | 
|---|
| 822 | camera, seperatly for the trigger and the FADC system. | 
|---|
| 823 | All signal from all photoelectrons are superimposed for | 
|---|
| 824 | each pixel. As an example you can see the output of | 
|---|
| 825 | the trigger and FADC system in figure \ref{fig_trigger_fadc}. | 
|---|
| 826 | \begin{figure}[h] | 
|---|
| 827 |  | 
|---|
| 828 | \caption{The response of one shower from the trigger (left) and | 
|---|
| 829 | fadc system (right).} | 
|---|
| 830 | \label{fig_trigger_fadc} | 
|---|
| 831 | \end{figure} | 
|---|
| 832 |  | 
|---|
| 833 | All these analog signals going into the trigger system are used | 
|---|
| 834 | to check if for a given event a trigger signal was generated or | 
|---|
| 835 | not. But before the start of the camera program on also has to | 
|---|
| 836 | set a few parameters of the trigger system like: | 
|---|
| 837 | \begin{itemize} | 
|---|
| 838 | \item diskriminator threshold | 
|---|
| 839 | \item mulitplicity | 
|---|
| 840 | \item topology | 
|---|
| 841 | \end{itemize} | 
|---|
| 842 | With this set of parameter the camera program will analyse | 
|---|
| 843 | if one event has triggered. For the triggered event all the FADC | 
|---|
| 844 | content will be writen on the file (*.root). In addition all the | 
|---|
| 845 | information about the event ($PartID, E, \Theta$,...) and | 
|---|
| 846 | information of trigger (FirstLevel, SecondLevel, ..) are also | 
|---|
| 847 | be written to the file. | 
|---|
| 848 |  | 
|---|
| 849 | One of the nice features of the camera program is the possiblity | 
|---|
| 850 | so simulate the NSB, the diffuse and the star light part of it. | 
|---|
| 851 | But before doing this, on has to start other programs | 
|---|
| 852 | (called starresponse and starfieldadder) that are describe | 
|---|
| 853 | below. | 
|---|
| 854 |  | 
|---|
| 855 | \subsubsection{starresponse} | 
|---|
| 856 |  | 
|---|
| 857 | This program will simulate the analog response for stars of | 
|---|
| 858 | a given brightness $B$. | 
|---|
| 859 |  | 
|---|
| 860 |  | 
|---|
| 861 | \subsubsection{starfieldadder} | 
|---|
| 862 |  | 
|---|
| 863 |  | 
|---|
| 864 |  | 
|---|
| 865 |  | 
|---|
| 866 |  | 
|---|
| 867 |  | 
|---|
| 868 |  | 
|---|
| 869 | \subsection{What to do} | 
|---|
| 870 |  | 
|---|
| 871 | \begin{itemize} | 
|---|
| 872 | \item pedestal fluctuations | 
|---|
| 873 | \item trigger | 
|---|
| 874 | \item rates (1st level, 2nd level, .... ) | 
|---|
| 875 | \item discriminator thresholds | 
|---|
| 876 | \item Xmax | 
|---|
| 877 | \item collection area | 
|---|
| 878 | \item $\gamma$/h-Seperation | 
|---|
| 879 | \item magnetic field studies ($\phi$-dependence) | 
|---|
| 880 | \item rotating star field | 
|---|
| 881 | \end{itemize} | 
|---|
| 882 |  | 
|---|
| 883 |  | 
|---|
| 884 |  | 
|---|
| 885 | \subsection{A suggestion for an initial workplan} | 
|---|
| 886 | We propose in the following a list of tasks whose common goal | 
|---|
| 887 | it is to provide and use data files with a definition of data suitable for | 
|---|
| 888 | initial studies, e.g. trigger rates, and for subsequent further | 
|---|
| 889 | analysis in MARS, e.g. $\gamma$/h-separation. We consider this list to be | 
|---|
| 890 | minimal and a first step only. | 
|---|
| 891 | Given the amount of work that will have to be invested, the detailed | 
|---|
| 892 | assumptions below should be backed up by collaboration-wide agreement; also, some | 
|---|
| 893 | input from groups is essential, so PLEASE REACT. | 
|---|
| 894 |  | 
|---|
| 895 | Event generation should be done with the following conditions: | 
|---|
| 896 | \begin{itemize} | 
|---|
| 897 | \item Signal definition: we will use the Crab, over a range of zenith angles | 
|---|
| 898 | (define!!). A minimum of 20,000 (can we get that?) triggers will be | 
|---|
| 899 | generated, starting from existing MMCS files; | 
|---|
| 900 | \item Observation mode: observations are assumed off-axis, | 
|---|
| 901 | with an offset of $\pm 0.4 \deg $ in $\Delta \beta$ along the direction of the | 
|---|
| 902 | local azimuthal angle $\phi$, | 
|---|
| 903 | switching sign every 500 events (see 'Assumptions' above); | 
|---|
| 904 | \item Adding star field: adapt starfieldadder and starresponse to the | 
|---|
| 905 | Crab. Ignore star field rotation problems for the moment, until a separate study | 
|---|
| 906 | is available (??); | 
|---|
| 907 | \item Pedestal fluctuations: all pixel values are smeared by a Gaussian | 
|---|
| 908 | centered at zero with a sigma of 1.5 photoelectrons; | 
|---|
| 909 | \item Trigger:  Padova to define (!!) the grouping of pixels, the | 
|---|
| 910 | trigger thresholds, and a method to avoid triggering on stars. We assume | 
|---|
| 911 | only a first-level trigger. | 
|---|
| 912 | \end{itemize} | 
|---|
| 913 | With this event sample available, we suggest to embark on several studies, | 
|---|
| 914 | which will help us in understanding better the MAGIC performance, and will | 
|---|
| 915 | also pave our way into future analysis. | 
|---|
| 916 | \begin{itemize} | 
|---|
| 917 | \item determine trigger rates (1st level only), as function of energy and | 
|---|
| 918 | zenith angle (also of impact parameter?); | 
|---|
| 919 | \item determine gamma acceptance, | 
|---|
| 920 | as function of energy and zenith angle (also of impact parameter?); | 
|---|
| 921 | \item determine effective collection area (gammas and hadrons), | 
|---|
| 922 | as function of energy and zenith angle (also of impact parameter?); | 
|---|
| 923 | \item show the position of the shower maximum (Xmax); | 
|---|
| 924 | \item start comparing methods for $\gamma$/h-separation, i.e. the generation | 
|---|
| 925 | of ON and OFF samples from the observations; | 
|---|
| 926 | \item start magnetic field studies ($\phi$-dependence); | 
|---|
| 927 | \item eventually, study the effect of the rotating star field. | 
|---|
| 928 | \end{itemize} | 
|---|
| 929 |  | 
|---|
| 930 |  | 
|---|
| 931 |  | 
|---|
| 932 | \section{Analysis of the real data} | 
|---|
| 933 |  | 
|---|
| 934 | \begin{thebibliography}{xxxxxxxxxxxxxxx} | 
|---|
| 935 | \bibitem{fegan96}D.J.Fegan, Space Sci.Rev. 75 (1996)137 | 
|---|
| 936 | \bibitem{hillas85}A.M.Hillas, Proc. 19th ICRC, La Jolla 3 (1985) 445 | 
|---|
| 937 | \bibitem{konopelko99}A.Konopelko et al., Astropart. Phys. 10 (1999) | 
|---|
| 938 | 275 | 
|---|
| 939 | \bibitem{reynolds93}P.T.Reynolds et al., ApJ 404 (1993) 206 | 
|---|
| 940 | \end{thebibliography} | 
|---|
| 941 |  | 
|---|
| 942 |  | 
|---|
| 943 | \end{document} | 
|---|
| 944 | % | 
|---|
| 945 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 946 | %%% Upper-case    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z | 
|---|
| 947 | %%% Lower-case    a b c d e f g h i j k l m n o p q r s t u v w x y z | 
|---|
| 948 | %%% Digits        0 1 2 3 4 5 6 7 8 9 | 
|---|
| 949 | %%% Exclamation   !           Double quote "          Hash (number) # | 
|---|
| 950 | %%% Dollar        $           Percent      %          Ampersand     & | 
|---|
| 951 | %%% Acute accent  '           Left paren   (          Right paren   ) | 
|---|
| 952 | %%% Asterisk      *           Plus         +          Comma         , | 
|---|
| 953 | %%% Minus         -           Point        .          Solidus       / | 
|---|
| 954 | %%% Colon         :           Semicolon    ;          Less than     < | 
|---|
| 955 | %%% Equals        =           Greater than >          Question mark ? | 
|---|
| 956 | %%% At            @           Left bracket [          Backslash     \ | 
|---|
| 957 | %%% Right bracket ]           Circumflex   ^          Underscore    _ | 
|---|
| 958 | %%% Grave accent  `           Left brace   {          Vertical bar  | | 
|---|
| 959 | %%% Right brace   }           Tilde        ~ | 
|---|
| 960 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
|---|
| 961 | %% Local Variables: | 
|---|
| 962 | %% mode:latex | 
|---|
| 963 | %% mode:font-lock | 
|---|
| 964 | %% mode:auto-fill | 
|---|
| 965 | %% time-stamp-line-limit:100 | 
|---|
| 966 | %% End: | 
|---|
| 967 | %% EOF | 
|---|
| 968 |  | 
|---|
| 969 |  | 
|---|
| 970 |  | 
|---|
| 971 |  | 
|---|
| 972 |  | 
|---|
| 973 |  | 
|---|
| 974 |  | 
|---|
| 975 |  | 
|---|
| 976 |  | 
|---|