source: trunk/MagicSoft/Mars/mbase/MMath.cc@ 8672

Last change on this file since 8672 was 8585, checked in by tbretz, 17 years ago
*** empty log message ***
File size: 22.8 KB
Line 
1/* ======================================================================== *\
2! $Name: not supported by cvs2svn $:$Id: MMath.cc,v 1.36 2007-06-19 11:14:33 tbretz Exp $
3! --------------------------------------------------------------------------
4!
5! *
6! * This file is part of MARS, the MAGIC Analysis and Reconstruction
7! * Software. It is distributed to you in the hope that it can be a useful
8! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
9! * It is distributed WITHOUT ANY WARRANTY.
10! *
11! * Permission to use, copy, modify and distribute this software and its
12! * documentation for any purpose is hereby granted without fee,
13! * provided that the above copyright notice appear in all copies and
14! * that both that copyright notice and this permission notice appear
15! * in supporting documentation. It is provided "as is" without express
16! * or implied warranty.
17! *
18!
19!
20! Author(s): Thomas Bretz 3/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2005
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MMath
30//
31// Mars - Math package (eg Significances, etc)
32//
33/////////////////////////////////////////////////////////////////////////////
34#include "MMath.h"
35
36#ifndef ROOT_TVector2
37#include <TVector2.h>
38#endif
39
40#ifndef ROOT_TVector3
41#include <TVector3.h>
42#endif
43
44#ifndef ROOT_TArrayD
45#include <TArrayD.h>
46#endif
47
48#ifndef ROOT_TComplex
49#include <TComplex.h>
50#endif
51
52//NamespaceImp(MMath);
53
54// --------------------------------------------------------------------------
55//
56// Calculate Significance as
57// significance = (s-b)/sqrt(s+k*k*b) mit k=s/b
58//
59// s: total number of events in signal region
60// b: number of background events in signal region
61//
62Double_t MMath::Significance(Double_t s, Double_t b)
63{
64 const Double_t k = b==0 ? 0 : s/b;
65 const Double_t f = s+k*k*b;
66
67 return f==0 ? 0 : (s-b)/TMath::Sqrt(f);
68}
69
70// --------------------------------------------------------------------------
71//
72// Symmetrized significance - this is somehow analog to
73// SignificanceLiMaSigned
74//
75// Returns Significance(s,b) if s>b otherwise -Significance(b, s);
76//
77Double_t MMath::SignificanceSym(Double_t s, Double_t b)
78{
79 return s>b ? Significance(s, b) : -Significance(b, s);
80}
81
82// --------------------------------------------------------------------------
83//
84// calculates the significance according to Li & Ma
85// ApJ 272 (1983) 317, Formula 17
86//
87// s // s: number of on events
88// b // b: number of off events
89// alpha = t_on/t_off; // t: observation time
90//
91// The significance has the same (positive!) value for s>b and b>s.
92//
93// Returns -1 if s<0 or b<0 or alpha<0 or the argument of sqrt<0
94//
95// Here is some eMail written by Daniel Mazin about the meaning of the arguments:
96//
97// > Ok. Here is my understanding:
98// > According to Li&Ma paper (correctly cited in MMath.cc) alpha is the
99// > scaling factor. The mathematics behind the formula 17 (and/or 9) implies
100// > exactly this. If you scale OFF to ON first (using time or using any other
101// > method), then you cannot use formula 17 (9) anymore. You can just try
102// > the formula before scaling (alpha!=1) and after scaling (alpha=1), you
103// > will see the result will be different.
104//
105// > Here are less mathematical arguments:
106//
107// > 1) the better background determination you have (smaller alpha) the more
108// > significant is your excess, thus your analysis is more sensitive. If you
109// > normalize OFF to ON first, you loose this sensitivity.
110//
111// > 2) the normalization OFF to ON has an error, which naturally depends on
112// > the OFF and ON. This error is propagating to the significance of your
113// > excess if you use the Li&Ma formula 17 correctly. But if you normalize
114// > first and use then alpha=1, the error gets lost completely, you loose
115// > somehow the criteria of goodness of the normalization.
116//
117Double_t MMath::SignificanceLiMa(Double_t s, Double_t b, Double_t alpha)
118{
119 const Double_t sum = s+b;
120
121 if (s<0 || b<0 || alpha<=0)
122 return -1;
123
124 const Double_t l = s==0 ? 0 : s*TMath::Log(s/sum*(alpha+1)/alpha);
125 const Double_t m = b==0 ? 0 : b*TMath::Log(b/sum*(alpha+1) );
126
127 return l+m<0 ? -1 : TMath::Sqrt((l+m)*2);
128}
129
130// --------------------------------------------------------------------------
131//
132// Calculates MMath::SignificanceLiMa(s, b, alpha). Returns 0 if the
133// calculation has failed. Otherwise the Li/Ma significance which was
134// calculated. If s<b a negative value is returned.
135//
136Double_t MMath::SignificanceLiMaSigned(Double_t s, Double_t b, Double_t alpha)
137{
138 const Double_t sig = SignificanceLiMa(s, b, alpha);
139 if (sig<=0)
140 return 0;
141
142 return TMath::Sign(sig, s-alpha*b);
143}
144
145// --------------------------------------------------------------------------
146//
147// Return Li/Ma (5) for the error of the excess, under the assumption that
148// the existance of a signal is already known.
149//
150Double_t MMath::SignificanceLiMaExc(Double_t s, Double_t b, Double_t alpha)
151{
152 Double_t Ns = s - alpha*b;
153 Double_t sN = s + alpha*alpha*b;
154
155 return Ns<0 || sN<0 ? 0 : Ns/TMath::Sqrt(sN);
156}
157
158// --------------------------------------------------------------------------
159//
160// Returns: 2/(sigma*sqrt(2))*integral[0,x](exp(-(x-mu)^2/(2*sigma^2)))
161//
162Double_t MMath::GaussProb(Double_t x, Double_t sigma, Double_t mean)
163{
164 if (x<mean)
165 return 0;
166
167 static const Double_t sqrt2 = TMath::Sqrt(2.);
168
169 const Double_t rc = TMath::Erf((x-mean)/(sigma*sqrt2));
170
171 if (rc<0)
172 return 0;
173 if (rc>1)
174 return 1;
175
176 return rc;
177}
178
179// ------------------------------------------------------------------------
180//
181// Return the "median" (at 68.3%) value of the distribution of
182// abs(a[i]-Median)
183//
184template <class Size, class Element>
185Double_t MMath::MedianDevImp(Size n, const Element *a, Double_t &med)
186{
187 static const Double_t prob = 0.682689477208650697; //MMath::GaussProb(1.0);
188
189 // Sanity check
190 if (n <= 0 || !a)
191 return 0;
192
193 // Get median of distribution
194 med = TMath::Median(n, a);
195
196 // Create the abs(a[i]-med) distribution
197 Double_t arr[n];
198 for (int i=0; i<n; i++)
199 arr[i] = TMath::Abs(a[i]-med);
200
201 //return TMath::Median(n, arr)/0.67449896936; //MMath::GaussProb(x)=0.5
202
203 // Define where to divide (floor because the highest possible is n-1)
204 const Int_t div = TMath::FloorNint(n*prob);
205
206 // Calculate result
207 Double_t dev = TMath::KOrdStat(n, arr, div);
208 if (n%2 == 0)
209 {
210 dev += TMath::KOrdStat(n, arr, div-1);
211 dev /= 2;
212 }
213
214 return dev;
215}
216
217// ------------------------------------------------------------------------
218//
219// Return the "median" (at 68.3%) value of the distribution of
220// abs(a[i]-Median)
221//
222Double_t MMath::MedianDev(Long64_t n, const Short_t *a, Double_t &med)
223{
224 return MedianDevImp(n, a, med);
225}
226
227// ------------------------------------------------------------------------
228//
229// Return the "median" (at 68.3%) value of the distribution of
230// abs(a[i]-Median)
231//
232Double_t MMath::MedianDev(Long64_t n, const Int_t *a, Double_t &med)
233{
234 return MedianDevImp(n, a, med);
235}
236
237// ------------------------------------------------------------------------
238//
239// Return the "median" (at 68.3%) value of the distribution of
240// abs(a[i]-Median)
241//
242Double_t MMath::MedianDev(Long64_t n, const Float_t *a, Double_t &med)
243{
244 return MedianDevImp(n, a, med);
245}
246
247// ------------------------------------------------------------------------
248//
249// Return the "median" (at 68.3%) value of the distribution of
250// abs(a[i]-Median)
251//
252Double_t MMath::MedianDev(Long64_t n, const Double_t *a, Double_t &med)
253{
254 return MedianDevImp(n, a, med);
255}
256
257// ------------------------------------------------------------------------
258//
259// Return the "median" (at 68.3%) value of the distribution of
260// abs(a[i]-Median)
261//
262Double_t MMath::MedianDev(Long64_t n, const Long_t *a, Double_t &med)
263{
264 return MedianDevImp(n, a, med);
265}
266
267// ------------------------------------------------------------------------
268//
269// Return the "median" (at 68.3%) value of the distribution of
270// abs(a[i]-Median)
271//
272Double_t MMath::MedianDev(Long64_t n, const Long64_t *a, Double_t &med)
273{
274 return MedianDevImp(n, a, med);
275}
276
277Double_t MMath::MedianDev(Long64_t n, const Short_t *a) { Double_t med; return MedianDevImp(n, a, med); }
278Double_t MMath::MedianDev(Long64_t n, const Int_t *a) { Double_t med; return MedianDevImp(n, a, med); }
279Double_t MMath::MedianDev(Long64_t n, const Float_t *a) { Double_t med; return MedianDevImp(n, a, med); }
280Double_t MMath::MedianDev(Long64_t n, const Double_t *a) { Double_t med; return MedianDevImp(n, a, med); }
281Double_t MMath::MedianDev(Long64_t n, const Long_t *a) { Double_t med; return MedianDevImp(n, a, med); }
282Double_t MMath::MedianDev(Long64_t n, const Long64_t *a) { Double_t med; return MedianDevImp(n, a, med); }
283
284// --------------------------------------------------------------------------
285//
286// This function reduces the precision to roughly 0.5% of a Float_t by
287// changing its bit-pattern (Be carefull, in rare cases this function must
288// be adapted to different machines!). This is usefull to enforce better
289// compression by eg. gzip.
290//
291void MMath::ReducePrecision(Float_t &val)
292{
293 UInt_t &f = (UInt_t&)val;
294
295 f += 0x00004000;
296 f &= 0xffff8000;
297}
298
299// -------------------------------------------------------------------------
300//
301// Quadratic interpolation
302//
303// calculate the parameters of a parabula such that
304// y(i) = a + b*x(i) + c*x(i)^2
305//
306// If the determinant==0 an empty TVector3 is returned.
307//
308TVector3 MMath::GetParab(const TVector3 &x, const TVector3 &y)
309{
310 const Double_t x1 = x(0);
311 const Double_t x2 = x(1);
312 const Double_t x3 = x(2);
313
314 const Double_t y1 = y(0);
315 const Double_t y2 = y(1);
316 const Double_t y3 = y(2);
317
318 const double det =
319 + x2*x3*x3 + x1*x2*x2 + x3*x1*x1
320 - x2*x1*x1 - x3*x2*x2 - x1*x3*x3;
321
322
323 if (det==0)
324 return TVector3();
325
326 const double det1 = 1.0/det;
327
328 const double ai11 = x2*x3*x3 - x3*x2*x2;
329 const double ai12 = x3*x1*x1 - x1*x3*x3;
330 const double ai13 = x1*x2*x2 - x2*x1*x1;
331
332 const double ai21 = x2*x2 - x3*x3;
333 const double ai22 = x3*x3 - x1*x1;
334 const double ai23 = x1*x1 - x2*x2;
335
336 const double ai31 = x3 - x2;
337 const double ai32 = x1 - x3;
338 const double ai33 = x2 - x1;
339
340 return TVector3((ai11*y1 + ai12*y2 + ai13*y3) * det1,
341 (ai21*y1 + ai22*y2 + ai23*y3) * det1,
342 (ai31*y1 + ai32*y2 + ai33*y3) * det1);
343}
344
345// --------------------------------------------------------------------------
346//
347// Interpolate the points with x-coordinates vx and y-coordinates vy
348// by a parabola (second order polynomial) and return the value at x.
349//
350Double_t MMath::InterpolParabLin(const TVector3 &vx, const TVector3 &vy, Double_t x)
351{
352 const TVector3 c = GetParab(vx, vy);
353 return c(0) + c(1)*x + c(2)*x*x;
354}
355
356// --------------------------------------------------------------------------
357//
358// Interpolate the points with x-coordinates vx=(-1,0,1) and
359// y-coordinates vy by a parabola (second order polynomial) and return
360// the value at x.
361//
362Double_t MMath::InterpolParabLin(const TVector3 &vy, Double_t x)
363{
364 const TVector3 c(vy(1), (vy(2)-vy(0))/2, vy(0)/2 - vy(1) + vy(2)/2);
365 return c(0) + c(1)*x + c(2)*x*x;
366}
367
368Double_t MMath::InterpolParabLog(const TVector3 &vx, const TVector3 &vy, Double_t x)
369{
370 const Double_t l0 = TMath::Log10(vx(0));
371 const Double_t l1 = TMath::Log10(vx(1));
372 const Double_t l2 = TMath::Log10(vx(2));
373
374 const TVector3 vx0(l0, l1, l2);
375 return InterpolParabLin(vx0, vy, TMath::Log10(x));
376}
377
378Double_t MMath::InterpolParabCos(const TVector3 &vx, const TVector3 &vy, Double_t x)
379{
380 const Double_t l0 = TMath::Cos(vx(0));
381 const Double_t l1 = TMath::Cos(vx(1));
382 const Double_t l2 = TMath::Cos(vx(2));
383
384 const TVector3 vx0(l0, l1, l2);
385 return InterpolParabLin(vx0, vy, TMath::Cos(x));
386}
387
388// --------------------------------------------------------------------------
389//
390// Analytically calculated result of a least square fit of:
391// y = A*e^(B*x)
392// Equal weights
393//
394// It returns TArrayD(2) = { A, B };
395//
396// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
397//
398TArrayD MMath::LeastSqFitExpW1(Int_t n, Double_t *x, Double_t *y)
399{
400 Double_t sumxsqy = 0;
401 Double_t sumylny = 0;
402 Double_t sumxy = 0;
403 Double_t sumy = 0;
404 Double_t sumxylny = 0;
405 for (int i=0; i<n; i++)
406 {
407 sumylny += y[i]*TMath::Log(y[i]);
408 sumxy += x[i]*y[i];
409 sumxsqy += x[i]*x[i]*y[i];
410 sumxylny += x[i]*y[i]*TMath::Log(y[i]);
411 sumy += y[i];
412 }
413
414 const Double_t dev = sumy*sumxsqy - sumxy*sumxy;
415
416 const Double_t a = (sumxsqy*sumylny - sumxy*sumxylny)/dev;
417 const Double_t b = (sumy*sumxylny - sumxy*sumylny)/dev;
418
419 TArrayD rc(2);
420 rc[0] = TMath::Exp(a);
421 rc[1] = b;
422 return rc;
423}
424
425// --------------------------------------------------------------------------
426//
427// Analytically calculated result of a least square fit of:
428// y = A*e^(B*x)
429// Greater weights to smaller values
430//
431// It returns TArrayD(2) = { A, B };
432//
433// see: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
434//
435TArrayD MMath::LeastSqFitExp(Int_t n, Double_t *x, Double_t *y)
436{
437 // -------- Greater weights to smaller values ---------
438 Double_t sumlny = 0;
439 Double_t sumxlny = 0;
440 Double_t sumxsq = 0;
441 Double_t sumx = 0;
442 for (int i=0; i<n; i++)
443 {
444 sumlny += TMath::Log(y[i]);
445 sumxlny += x[i]*TMath::Log(y[i]);
446
447 sumxsq += x[i]*x[i];
448 sumx += x[i];
449 }
450
451 const Double_t dev = n*sumxsq-sumx*sumx;
452
453 const Double_t a = (sumlny*sumxsq - sumx*sumxlny)/dev;
454 const Double_t b = (n*sumxlny - sumx*sumlny)/dev;
455
456 TArrayD rc(2);
457 rc[0] = TMath::Exp(a);
458 rc[1] = b;
459 return rc;
460}
461
462// --------------------------------------------------------------------------
463//
464// Analytically calculated result of a least square fit of:
465// y = A+B*ln(x)
466//
467// It returns TArrayD(2) = { A, B };
468//
469// see: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
470//
471TArrayD MMath::LeastSqFitLog(Int_t n, Double_t *x, Double_t *y)
472{
473 Double_t sumylnx = 0;
474 Double_t sumy = 0;
475 Double_t sumlnx = 0;
476 Double_t sumlnxsq = 0;
477 for (int i=0; i<n; i++)
478 {
479 sumylnx += y[i]*TMath::Log(x[i]);
480 sumy += y[i];
481 sumlnx += TMath::Log(x[i]);
482 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
483 }
484
485 const Double_t b = (n*sumylnx-sumy*sumlnx)/(n*sumlnxsq-sumlnx*sumlnx);
486 const Double_t a = (sumy-b*sumlnx)/n;
487
488 TArrayD rc(2);
489 rc[0] = a;
490 rc[1] = b;
491 return rc;
492}
493
494// --------------------------------------------------------------------------
495//
496// Analytically calculated result of a least square fit of:
497// y = A*x^B
498//
499// It returns TArrayD(2) = { A, B };
500//
501// see: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
502//
503TArrayD MMath::LeastSqFitPowerLaw(Int_t n, Double_t *x, Double_t *y)
504{
505 Double_t sumlnxlny = 0;
506 Double_t sumlnx = 0;
507 Double_t sumlny = 0;
508 Double_t sumlnxsq = 0;
509 for (int i=0; i<n; i++)
510 {
511 sumlnxlny += TMath::Log(x[i])*TMath::Log(y[i]);
512 sumlnx += TMath::Log(x[i]);
513 sumlny += TMath::Log(y[i]);
514 sumlnxsq += TMath::Log(x[i])*TMath::Log(x[i]);
515 }
516
517 const Double_t b = (n*sumlnxlny-sumlnx*sumlny)/(n*sumlnxsq-sumlnx*sumlnx);
518 const Double_t a = (sumlny-b*sumlnx)/n;
519
520 TArrayD rc(2);
521 rc[0] = TMath::Exp(a);
522 rc[1] = b;
523 return rc;
524}
525
526// --------------------------------------------------------------------------
527//
528// Calculate the intersection of two lines defined by (x1;y1) and (x2;x2)
529// Returns the intersection point.
530//
531// It is assumed that the lines intersect. If there is no intersection
532// TVector2() is returned (which is not destinguishable from
533// TVector2(0,0) if the intersection is at the coordinate source)
534//
535// Formula from: http://mathworld.wolfram.com/Line-LineIntersection.html
536//
537TVector2 MMath::GetIntersectionPoint(const TVector2 &x1, const TVector2 &y1, const TVector2 &x2, const TVector2 &y2)
538{
539 TMatrix d(2,2);
540 d[0][0] = x1.X()-y1.X();
541 d[0][1] = x2.X()-y2.X();
542 d[1][0] = x1.Y()-y1.Y();
543 d[1][1] = x2.Y()-y2.Y();
544
545 const Double_t denom = d.Determinant();
546 if (denom==0)
547 return TVector2();
548
549 TMatrix l1(2,2);
550 TMatrix l2(2,2);
551
552 l1[0][0] = x1.X();
553 l1[0][1] = y1.X();
554 l2[0][0] = x2.X();
555 l2[0][1] = y2.X();
556
557 l1[1][0] = x1.Y();
558 l1[1][1] = y1.Y();
559 l2[1][0] = x2.Y();
560 l2[1][1] = y2.Y();
561
562 TMatrix a(2,2);
563 a[0][0] = l1.Determinant();
564 a[0][1] = l2.Determinant();
565 a[1][0] = x1.X()-y1.X();
566 a[1][1] = x2.X()-y2.X();
567
568 const Double_t X = a.Determinant()/denom;
569
570 a[1][0] = x1.Y()-y1.Y();
571 a[1][1] = x2.Y()-y2.Y();
572
573 const Double_t Y = a.Determinant()/denom;
574
575 return TVector2(X, Y);
576}
577
578// --------------------------------------------------------------------------
579//
580// Solves: x^2 + ax + b = 0;
581// Return number of solutions returned as x1, x2
582//
583Int_t MMath::SolvePol2(Double_t a, Double_t b, Double_t &x1, Double_t &x2)
584{
585 const Double_t r = a*a - 4*b;
586 if (r<0)
587 return 0;
588
589 if (r==0)
590 {
591 x1 = x2 = -a/2;
592 return 1;
593 }
594
595 const Double_t s = TMath::Sqrt(r);
596
597 x1 = (-a+s)/2;
598 x2 = (-a-s)/2;
599
600 return 2;
601}
602
603// --------------------------------------------------------------------------
604//
605// This is a helper function making the execution of SolverPol3 a bit faster
606//
607static inline Double_t ReMul(const TComplex &c1, const TComplex &th)
608{
609 const TComplex c2 = TComplex::Cos(th/3.);
610 return c1.Re() * c2.Re() - c1.Im() * c2.Im();
611}
612
613// --------------------------------------------------------------------------
614//
615// Solves: x^3 + ax^2 + bx + c = 0;
616// Return number of the real solutions, returned as z1, z2, z3
617//
618// Algorithm adapted from http://home.att.net/~srschmitt/cubizen.heml
619// Which is based on the solution given in
620// http://mathworld.wolfram.com/CubicEquation.html
621//
622// -------------------------------------------------------------------------
623//
624// Exact solutions of cubic polynomial equations
625// by Stephen R. Schmitt Algorithm
626//
627// An exact solution of the cubic polynomial equation:
628//
629// x^3 + a*x^2 + b*x + c = 0
630//
631// was first published by Gerolamo Cardano (1501-1576) in his treatise,
632// Ars Magna. He did not discoverer of the solution; a professor of
633// mathematics at the University of Bologna named Scipione del Ferro (ca.
634// 1465-1526) is credited as the first to find an exact solution. In the
635// years since, several improvements to the original solution have been
636// discovered. Zeno source code
637//
638// http://home.att.net/~srschmitt/cubizen.html
639//
640// % compute real or complex roots of cubic polynomial
641// function cubic( var z1, z2, z3 : real, a, b, c : real ) : real
642//
643// var Q, R, D, S, T : real
644// var im, th : real
645//
646// Q := (3*b - a^2)/9
647// R := (9*b*a - 27*c - 2*a^3)/54
648// D := Q^3 + R^2 % polynomial discriminant
649//
650// if (D >= 0) then % complex or duplicate roots
651//
652// S := sgn(R + sqrt(D))*abs(R + sqrt(D))^(1/3)
653// T := sgn(R - sqrt(D))*abs(R - sqrt(D))^(1/3)
654//
655// z1 := -a/3 + (S + T) % real root
656// z2 := -a/3 - (S + T)/2 % real part of complex root
657// z3 := -a/3 - (S + T)/2 % real part of complex root
658// im := abs(sqrt(3)*(S - T)/2) % complex part of root pair
659//
660// else % distinct real roots
661//
662// th := arccos(R/sqrt( -Q^3))
663//
664// z1 := 2*sqrt(-Q)*cos(th/3) - a/3
665// z2 := 2*sqrt(-Q)*cos((th + 2*pi)/3) - a/3
666// z3 := 2*sqrt(-Q)*cos((th + 4*pi)/3) - a/3
667// im := 0
668//
669// end if
670//
671// return im % imaginary part
672//
673// end function
674//
675// see also http://en.wikipedia.org/wiki/Cubic_equation
676//
677Int_t MMath::SolvePol3(Double_t a, Double_t b, Double_t c,
678 Double_t &x1, Double_t &x2, Double_t &x3)
679{
680 // Double_t coeff[4] = { 1, a, b, c };
681 // return TMath::RootsCubic(coeff, x1, x2, x3) ? 1 : 3;
682
683 const Double_t Q = (a*a - 3*b)/9;
684 const Double_t R = (9*b*a - 27*c - 2*a*a*a)/54;
685 const Double_t D = R*R - Q*Q*Q; // polynomial discriminant
686
687 // ----- The single-real / duplicate-roots solution -----
688
689 // D<0: three real roots
690 // D>0: one real root
691 // D==0: maximum two real roots (two identical roots)
692
693 // R==0: only one unique root
694 // R!=0: two roots
695
696 if (D==0)
697 {
698 const Double_t r = MMath::Sqrt3(R);
699
700 x1 = r - a/3.; // real root
701 if (R==0)
702 return 1;
703
704 x2 = 2*r - a/3.; // real root
705 return 2;
706 }
707
708 if (D>0) // complex or duplicate roots
709 {
710 const Double_t sqrtd = TMath::Sqrt(D);
711
712 const Double_t A = TMath::Sign(1., R)*MMath::Sqrt3(TMath::Abs(R)+sqrtd);
713
714 // The case A==0 cannot happen. This would imply D==0
715 // if (A==0)
716 // {
717 // x1 = -a/3;
718 // return 1;
719 // }
720
721 x1 = (A+Q/A)-a/3;
722
723 //const Double_t S = MMath::Sqrt3(R + sqrtd);
724 //const Double_t T = MMath::Sqrt3(R - sqrtd);
725 //x1 = (S+T) - a/3.; // real root
726
727 return 1;
728
729 //z2 = (S + T)/2 - a/3.; // real part of complex root
730 //z3 = (S + T)/2 - a/3.; // real part of complex root
731 //im = fabs(sqrt(3)*(S - T)/2) // complex part of root pair
732 }
733
734 // ----- The general solution with three roots ---
735
736 if (Q==0)
737 return 0;
738
739 if (Q>0) // This is here for speed reasons
740 {
741 const Double_t sqrtq = TMath::Sqrt(Q);
742 const Double_t rq = R/TMath::Abs(Q);
743
744 const Double_t t = TMath::ACos(rq/sqrtq)/3;
745
746 static const Double_t sqrt3 = TMath::Sqrt(3.);
747
748 const Double_t s = TMath::Sin(t)*sqrt3;
749 const Double_t c = TMath::Cos(t);
750
751 x1 = 2*sqrtq * c - a/3;
752 x2 = -sqrtq * (s + c) - a/3;
753 x3 = sqrtq * (s - c) - a/3;
754
755 /* --- Easier to understand but slower ---
756 const Double_t th1 = TMath::ACos(rq/sqrtq);
757 const Double_t th2 = th1 + TMath::TwoPi();
758 const Double_t th3 = th2 + TMath::TwoPi();
759
760 x1 = 2.*sqrtq * TMath::Cos(th1/3.) - a/3.;
761 x2 = 2.*sqrtq * TMath::Cos(th2/3.) - a/3.;
762 x3 = 2.*sqrtq * TMath::Cos(th3/3.) - a/3.;
763 */
764 return 3;
765 }
766
767 const TComplex sqrtq = TComplex::Sqrt(Q);
768 const Double_t rq = R/TMath::Abs(Q);
769
770 const TComplex th1 = TComplex::ACos(rq/sqrtq);
771 const TComplex th2 = th1 + TMath::TwoPi();
772 const TComplex th3 = th2 + TMath::TwoPi();
773
774 // For ReMul, see bove
775 x1 = ReMul(2.*sqrtq, th1) - a/3.;
776 x2 = ReMul(2.*sqrtq, th2) - a/3.;
777 x3 = ReMul(2.*sqrtq, th3) - a/3.;
778
779 return 3;
780}
Note: See TracBrowser for help on using the repository browser.