source: trunk/MagicSoft/Mars/mimage/MImgCleanStd.cc@ 3829

Last change on this file since 3829 was 3415, checked in by tonello, 21 years ago
*** empty log message ***
File size: 22.6 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 12/2000 <mailto:tbretz@astro.uni-wuerzburg.de>
19! Author(s): Harald Kornmayer, 1/2001
20! Author(s): Nadia Tonello, 4/2003 <mailto:tonello@mppmu.mpg.de>
21!
22! Copyright: MAGIC Software Development, 2000-2003
23!
24!
25\* ======================================================================== */
26
27/////////////////////////////////////////////////////////////////////////////
28//
29// MImgCleanStd
30//
31// The Image Cleaning task selects the pixels you use for the Hillas
32// parameters calculation.
33//
34// There are two methods to make the selection: the standard one, as done
35// in the analysis of CT1 data, and the democratic one, as suggested by
36// W.Wittek. The number of photo-electrons of a pixel is compared with the
37// pedestal RMS of the pixel itself (standard method) or with the average
38// RMS of the inner pixels (democratic method).
39// In both cases, the possibility to have a camera with pixels of
40// different area is taken into account.
41// The too noisy pixels can be recognized and eventally switched off
42// (Unmap: set blind pixels to UNUSED) separately, using the
43// MBlindPixelCalc Class. In the MBlindPixelCalc class there is also the
44// function to replace the value of the noisy pixels with the interpolation
45// of the content of the neighbors (SetUseInterpolation).
46//
47// Example:
48// ...
49// MBlindPixelCalc blind;
50// blind.SetUseInterpolation();
51// blind.SetUseBlindPixels();
52//
53// MImgCleanStd clean;
54// ...
55// tlist.AddToList(&blind);
56// tlist.AddToList(&clean);
57//
58// Look at the MBlindPixelCalc Class for more details.
59//
60// Starting point: default values ----------------------------------------
61//
62// When an event is read, before the image cleaning, all the pixels that
63// are in MCerPhotEvt are set as USED and NOT CORE. All the pixels belong
64// to RING number 1 (like USED pixels).
65// Look at MCerPhotPix.h to see how these informations of the pixel are
66// stored.
67// The default cleaning METHOD is the STANDARD one and the number of the
68// rings around the CORE pixel it analyzes is 1. Look at the Constructor
69// of the class in MImgCleanStd.cc to see (or change) the default values.
70//
71// Example: To modify this setting, use the member functions
72// SetMethod(MImgCleanStd::kDemocratic) and SetCleanRings(UShort_t n).
73//
74// MImgCleanStd:CleanStep1 -----------------------------------------------
75//
76// The first step of cleaning defines the CORE pixels. The CORE pixels are
77// the ones which contain the informations about the core of the electro-
78// magnetic shower.
79// The ratio (A_0/A_i) is calculated from fCam->GetPixRatio(i). A_0 is
80// the area of the central pixel of the camera, A_i is the area of the
81// examined pixel. In this way, if we have a MAGIC-like camera, with the
82// outer pixels bigger than the inner ones, the level of cleaning in the
83// two different regions is weighted.
84// This avoids problems of deformations of the shower images.
85// The signal S_i and the pedestal RMS Prms_i of the pixel are called from
86// the object MCerPhotPix.
87// If (default method = kStandard)
88//Begin_Html
89//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
90//End_Html
91// the pixel is set as CORE pixel. L_1 (n=1) is called "first level of
92// cleaning" (default: fCleanLvl1 = 3).
93// All the other pixels are set as UNUSED and belong to RING 0.
94// After this point, only the CORE pixels are set as USED, with RING
95// number 1.
96//
97// MImgCleanStd:CleanStep2 ----------------------------------------------
98//
99// The second step of cleaning looks at the isolated CORE pixels and sets
100// them to UNUSED. An isolated pixel is a pixel without CORE neighbors.
101// At the end of this point, we have set as USED only CORE pixels with at
102// least one CORE neighbor.
103//
104// MImgCleanStd:CleanStep3 ----------------------------------------------
105//
106// The third step of cleaning looks at all the pixels (USED or UNUSED) that
107// surround the USED pixels.
108// If the content of the analyzed pixel survives at the second level of
109// cleaning, i.e. if
110//Begin_Html
111//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
112//End_Html
113// the pixel is set as USED. L_2 (n=2) is called "second level of cleaning"
114// (default:fCleanLvl2 = 2.5).
115//
116// When the number of RINGS to analyze is 1 (default value), only the
117// pixels that have a neighbor CORE pixel are analyzed.
118//
119// There is the option to decide the number of times you want to repeat
120// this procedure (number of RINGS analyzed around the core pixels = n).
121// Every time the level of cleaning is the same (fCleanLvl2) and the pixel
122// will belong to ring r+1, 1 < r < n+1. This is described in
123// MImgCleanStd:CleanStep4 .
124//
125// Dictionary and member functions ---------------------------------------
126//
127// Here there is the detailed description of the member functions and of
128// the terms commonly used in the class.
129//
130// STANDARD CLEANING:
131// =================
132// This is the method used for the CT1 data analysis. It is the default
133// method of the class.
134// The number of photo-electrons of a pixel (S_i) is compared to the
135// pedestal RMS of the pixel itself (Prms_i). To have the comparison to
136// the same photon density for all the pixels, taking into account they
137// can have different areas, we have to keep in mind that the number of
138// photons that hit each pixel, goes linearly with the area of the pixel.
139// The fluctuations of the LONS are proportional to sqrt(A_i), so when we
140// compare S_i with Prms_i, only a factor sqrt(A_0/A_i) is missing to
141// have the same (N.photons/Area) threshold for all the pixels.
142//
143// !!WARNING: if noise independent from the
144// pixel size (example: electronic noise) is introduced,
145// then the noise fluctuations are no longer proportional
146// to sqrt(A_i), and then the cut value (for a camera with
147// pixels of different sizes) resulting from the above
148// procedure would not be proportional to pixel size as we
149// intend. In that case, democratic cleaning is preferred.
150//
151// If
152//Begin_Html
153//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f1.png">
154//End_Html
155// the pixel survives the cleaning and it is set as CORE (when L_n is the
156// first level of cleaning, fCleanLvl1) or USED (when L_n is the second
157// level of cleaning, fCleanLvl2).
158//
159// Example:
160//
161// MImgCleanStd clean;
162// //creates a default Cleaning object, with default setting
163// ...
164// tlist.AddToList(&clean);
165// // add the image cleaning to the main task list
166//
167// DEMOCRATIC CLEANING:
168// ===================
169// You use this cleaning method when you want to compare the number of
170// photo-electons of each pixel with the average pedestal RMS
171// (fInnerNoise = fSgb->GetSigmabarInner()) of the inner pixels (for the
172// MAGIC camera they are the smaller ones):
173//Begin_Html
174//&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src="images/MImgCleanStd-f2.png">
175//End_Html
176// In this case, the simple ratio (A_0/A_i) is used to weight the level of
177// cleaning, because both the inner and the outer pixels (that in MAGIC
178// have a different area) are compared to the same pedestal RMS, coming
179// from the inner pixels.
180// To calculate the average pedestal RMS of the inner pixels, you have to
181// add to the main task list an object of type MSigmabarCalc before the
182// MImgCleanStd object. To know how the calculation of fInnerNoise is done
183// look at the MSigmabarCalc Class.
184//
185// Example:
186//
187// MSigmabarCalc sbcalc;
188// //creates an object that calcutates the average pedestal RMS
189// MImgCleanStd clean;
190// ...
191// tlist.AddToList(&sbcalc);
192// tlist.AddToList(&clean);
193//
194// Member Function: SetMethod()
195// ============================
196// When you call the MImgCleanStd task, the default method is kStandard.
197//
198// If you want to switch to the kDemocratic method you have to
199// call this member function.
200//
201// Example:
202//
203// MImgCleanStd clean;
204// //creates a default Cleaning object, with default setting
205//
206// clean.SetMethod(MImgCleanStd::kDemocratic);
207// //now the method of cleaning is changed to Democratic
208//
209// FIRST AND SECOND CLEANING LEVEL
210// ===============================
211// When you call the MImgCleanStd task, the default cleaning levels are
212// fCleanLvl1 = 3, fCleanLvl2 = 2.5. You can change them easily when you
213// create the MImgCleanStd object.
214//
215// Example:
216//
217// MImgCleanStd clean(Float_t lvl1,Float_t lvl2);
218// //creates a default cleaning object, but the cleaning levels are now
219// //lvl1 and lvl2.
220//
221// RING NUMBER
222// ===========
223// The standard cleaning procedure is such that it looks for the
224// informations of the boundary part of the shower only on the first
225// neighbors of the CORE pixels.
226// There is the possibility now to look not only at the firs neighbors
227// (first ring),but also further away, around the CORE pixels. All the new
228// pixels you can find with this method, are tested with the second level
229// of cleaning and have to have at least an USED neighbor.
230//
231// They will be also set as USED and will be taken into account during the
232// calculation of the image parameters.
233// The only way to distinguish them from the other USED pixels, is the
234// Ring number, that is bigger than 1.
235//
236// Example: You can decide how many rings you want to analyze using:
237//
238// MImgCleanStd clean;
239// //creates a default cleaning object (default number of rings =1)
240// clean.SetCleanRings(UShort_t r);
241// //now it looks r times around the CORE pixels to find new pixels with
242// //signal.
243//
244//
245// Input Containers:
246// MGeomCam
247// MCerPhotEvt
248// [MSigmabar]
249//
250// Output Containers:
251// MCerPhotEvt
252//
253/////////////////////////////////////////////////////////////////////////////
254#include "MImgCleanStd.h"
255
256#include <stdlib.h> // atof
257#include <fstream> // ofstream, SavePrimitive
258
259#include <TGFrame.h> // TGFrame
260#include <TGLabel.h> // TGLabel
261#include <TGTextEntry.h> // TGTextEntry
262
263#include "MLog.h"
264#include "MLogManip.h"
265
266#include "MParList.h"
267#include "MSigmabar.h"
268#include "MCameraData.h"
269
270#include "MGeomPix.h"
271#include "MGeomCam.h"
272
273#include "MCerPhotPix.h"
274#include "MCerPhotEvt.h"
275
276#include "MGGroupFrame.h" // MGGroupFrame
277
278ClassImp(MImgCleanStd);
279
280using namespace std;
281
282enum {
283 kImgCleanLvl1,
284 kImgCleanLvl2
285};
286
287static const TString gsDefName = "MImgCleanStd";
288static const TString gsDefTitle = "Task to perform image cleaning";
289
290// --------------------------------------------------------------------------
291//
292// Default constructor. Here you can specify the cleaning method and levels.
293// If you don't specify them the 'common standard' values 3.0 and 2.5 (sigma
294// above mean) are used.
295// Here you can also specify how many rings around the core pixels you want
296// to analyze (with the fixed lvl2). The default value for "rings" is 1.
297//
298MImgCleanStd::MImgCleanStd(const Float_t lvl1, const Float_t lvl2,
299 const char *name, const char *title)
300 : fSgb(NULL), fCleaningMethod(kStandard), fCleanLvl1(lvl1),
301 fCleanLvl2(lvl2), fCleanRings(1)
302
303{
304 fName = name ? name : gsDefName.Data();
305 fTitle = title ? title : gsDefTitle.Data();
306
307 Print();
308}
309
310// --------------------------------------------------------------------------
311//
312// The first step of cleaning defines the CORE pixels. All the other pixels
313// are set as UNUSED and belong to RING 0.
314// After this point, only the CORE pixels are set as USED, with RING
315// number 1.
316//
317// NT 28/04/2003: now the option to use the standard method or the
318// democratic method is implemented:
319//
320// kStandard: This method looks for all pixels with an entry (photons)
321// that is three times bigger than the noise of the pixel
322// (default: 3 sigma, clean level 1)
323//
324// kDemocratic: this method looks for all pixels with an entry (photons)
325// that is n times bigger than the noise of the mean of the
326// inner pixels (default: 3 sigmabar, clean level 1)
327//
328//
329void MImgCleanStd::CleanStep1()
330{
331 const TArrayD &data = fData->GetData();
332
333 //
334 // check the number of all pixels against the noise level and
335 // set them to 'unused' state if necessary
336 //
337 MCerPhotPix *pix;
338
339 // Loop over all pixels
340 MCerPhotEvtIter Next(fEvt, kFALSE);
341 while ((pix=static_cast<MCerPhotPix*>(Next())))
342 if (!pix->IsPixelUnmapped() && data[pix->GetPixId()] <= fCleanLvl1)
343 pix->SetPixelUnused();
344}
345
346// --------------------------------------------------------------------------
347//
348// Check if the survived pixel have a neighbor, that also
349// survived, otherwise set pixel to unused (removes pixels without
350// neighbors).
351//
352void MImgCleanStd::CleanStep2()
353{
354 MCerPhotPix *pix;
355
356 // Loop over used pixels only
357 TIter Next(*fEvt);
358
359 while ((pix=static_cast<MCerPhotPix*>(Next())))
360 {
361 // get pixel id of this entry
362 const Int_t idx = pix->GetPixId();
363
364 // check for 'used' neighbors of this pixel
365 const MGeomPix &gpix = (*fCam)[idx];
366 const Int_t nnmax = gpix.GetNumNeighbors();
367
368 Bool_t hasNeighbor = kFALSE;
369
370 //loop on the neighbors to check if they are used
371 for (Int_t j=0; j<nnmax; j++)
372 {
373 const Int_t idx2 = gpix.GetNeighbor(j);
374
375 // when you find an used neighbor, break the loop
376 if (fEvt->IsPixelUsed(idx2))
377 {
378 hasNeighbor = kTRUE;
379 break;
380 }
381 }
382
383 if (hasNeighbor == kFALSE)
384 pix->SetPixelUnused();
385 }
386
387 //
388 // now we declare all pixels that survive as CorePixels
389 //
390
391 Next.Reset();
392 while ((pix=static_cast<MCerPhotPix*>(Next())))
393 {
394 if ( pix->IsPixelUsed())
395 pix->SetPixelCore();}
396}
397
398void MImgCleanStd::CleanStep3b(MCerPhotPix &pix)
399{
400 const Int_t idx = pix.GetPixId();
401
402 //
403 // check if the pixel's next neighbor is a core pixel.
404 // if it is a core pixel set pixel state to: used.
405 //
406 MGeomPix &gpix = (*fCam)[idx];
407 const Int_t nnmax = gpix.GetNumNeighbors();
408
409 for (Int_t j=0; j<nnmax; j++)
410 {
411 const Int_t idx2 = gpix.GetNeighbor(j);
412
413 if (!fEvt->IsPixelCore(idx2))
414 continue;
415
416 pix.SetPixelUsed();
417 break;
418 }
419}
420
421// --------------------------------------------------------------------------
422//
423// NT: Add option "rings": default value = 1.
424// Look n (n>1) times for the boundary pixels around the used pixels.
425// If a pixel has more than 2.5 (clean level 2.5) sigma,
426// it is declared as used.
427//
428// If a value<2 for fCleanRings is used, no CleanStep4 is done.
429//
430void MImgCleanStd::CleanStep4(UShort_t r, MCerPhotPix &pix)
431{
432 //
433 // Skip events that have already a defined status;
434 //
435 if (pix.GetRing() != 0)
436 {
437 return;
438 }
439
440 //
441 // check if the pixel's next neighbor is a used pixel.
442 // if it is a used pixel set pixel state to: used,
443 // and tell to which ring it belongs to.
444 //
445 const Int_t idx = pix.GetPixId();
446
447 MGeomPix &gpix = (*fCam)[idx];
448
449 const Int_t nnmax = gpix.GetNumNeighbors();
450
451 for (Int_t j=0; j<nnmax; j++)
452 {
453 const Int_t idx2 = gpix.GetNeighbor(j);
454
455 MCerPhotPix *npix = fEvt->GetPixById(idx2);
456 if (!npix || !npix->IsPixelUsed() || npix->GetRing()>r-1 )
457 continue;
458
459 pix.SetRing(r);
460 break;
461 }
462}
463
464// --------------------------------------------------------------------------
465//
466// Look for the boundary pixels around the core pixels
467// if a pixel has more than 2.5 (clean level 2.5) sigma, and
468// a core neigbor, it is declared as used.
469//
470void MImgCleanStd::CleanStep3()
471{
472 const TArrayD &data = fData->GetData();
473
474 for (UShort_t r=1; r<fCleanRings+1; r++)
475 {
476 MCerPhotPix *pix;
477
478 // Loop over all pixels
479
480 MCerPhotEvtIter NextAll(fEvt, kFALSE);
481 while ((pix=static_cast<MCerPhotPix*>(NextAll())))
482 {
483 //
484 // if pixel is a core pixel or unmapped, go to the next pixel
485 //
486 if (pix->IsPixelCore())
487 {
488 continue;}
489 if (pix->IsPixelUnmapped())
490 {
491 continue;}
492
493 if (data[pix->GetPixId()] <= fCleanLvl2)
494 {
495 continue;}
496
497 if (r==1)
498 {
499 CleanStep3b(*pix);}
500 else
501 {
502 CleanStep4(r, *pix);}
503
504 }
505 }
506}
507
508// --------------------------------------------------------------------------
509//
510// Check if MEvtHeader exists in the Parameter list already.
511// if not create one and add them to the list
512//
513Int_t MImgCleanStd::PreProcess (MParList *pList)
514{
515 fCam = (MGeomCam*)pList->FindObject(AddSerialNumber("MGeomCam"));
516 if (!fCam)
517 {
518 *fLog << dbginf << "MGeomCam not found (no geometry information available)... aborting." << endl;
519 return kFALSE;
520 }
521
522 fEvt = (MCerPhotEvt*)pList->FindObject(AddSerialNumber("MCerPhotEvt"));
523 if (!fEvt)
524 {
525 *fLog << dbginf << "MCerPhotEvt not found... aborting." << endl;
526 return kFALSE;
527 }
528
529 if (fCleaningMethod == kDemocratic)
530 {
531 fSgb = (MSigmabar*)pList->FindObject(AddSerialNumber("MSigmabar"));
532 if (!fSgb)
533 {
534 *fLog << dbginf << "MSigmabar not found... aborting." << endl;
535 return kFALSE;
536 }
537 }
538 else
539 {
540 fPed = (MPedPhotCam*)pList->FindObject(AddSerialNumber("MPedPhotCam"));
541 if (!fPed)
542 {
543 *fLog << dbginf << "MPedPhotCam not found... aborting." << endl;
544 return kFALSE;
545 }
546 }
547
548 fData = (MCameraData*)pList->FindCreateObj(AddSerialNumber("MCameraData"));
549 if (!fData)
550 return kFALSE;
551
552 return kTRUE;
553}
554
555// --------------------------------------------------------------------------
556//
557// Cleans the image.
558//
559Int_t MImgCleanStd::Process()
560{
561 if (fSgb)
562 fData->CalcCleaningLevel(*fEvt, *fSgb, *fCam);
563 else
564 fData->CalcCleaningLevel(*fEvt, *fPed, *fCam);
565
566#ifdef DEBUG
567 *fLog << all << "CleanStep 1" << endl;
568#endif
569 CleanStep1();
570
571#ifdef DEBUG
572 *fLog << all << "CleanStep 2" << endl;
573#endif
574 CleanStep2();
575#ifdef DEBUG
576 *fLog << all << "CleanStep 3" << endl;
577#endif
578 CleanStep3();
579#ifdef DEBUG
580 *fLog << all << "Done." << endl;
581#endif
582
583 return kTRUE;
584}
585
586// --------------------------------------------------------------------------
587//
588// Print descriptor and cleaning levels.
589//
590void MImgCleanStd::Print(Option_t *o) const
591{
592 *fLog << all << GetDescriptor() << " using ";
593 switch (fCleaningMethod)
594 {
595 case kDemocratic:
596 *fLog << "democratic";
597 break;
598 case kStandard:
599 *fLog << "standard";
600 break;
601 }
602 *fLog << " cleaning initialized with noise level " << fCleanLvl1 << " and " << fCleanLvl2;
603 *fLog << " (CleanRings=" << fCleanRings << ")" << endl;
604}
605
606// --------------------------------------------------------------------------
607//
608// Create two text entry fields, one for each cleaning level and a
609// describing text line.
610//
611void MImgCleanStd::CreateGuiElements(MGGroupFrame *f)
612{
613 //
614 // Create a frame for line 3 and 4 to be able
615 // to align entry field and label in one line
616 //
617 TGHorizontalFrame *f1 = new TGHorizontalFrame(f, 0, 0);
618 TGHorizontalFrame *f2 = new TGHorizontalFrame(f, 0, 0);
619
620 /*
621 * --> use with root >=3.02 <--
622 *
623
624 TGNumberEntry *fNumEntry1 = new TGNumberEntry(frame, 3.0, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
625 TGNumberEntry *fNumEntry2 = new TGNumberEntry(frame, 2.5, 2, M_NENT_LVL1, kNESRealOne, kNEANonNegative);
626
627 */
628 TGTextEntry *entry1 = new TGTextEntry(f1, "****", kImgCleanLvl1);
629 TGTextEntry *entry2 = new TGTextEntry(f2, "****", kImgCleanLvl2);
630
631 // --- doesn't work like expected (until root 3.02?) --- fNumEntry1->SetAlignment(kTextRight);
632 // --- doesn't work like expected (until root 3.02?) --- fNumEntry2->SetAlignment(kTextRight);
633
634 entry1->SetText("3.0");
635 entry2->SetText("2.5");
636
637 entry1->Associate(f);
638 entry2->Associate(f);
639
640 TGLabel *l1 = new TGLabel(f1, "Cleaning Level 1");
641 TGLabel *l2 = new TGLabel(f2, "Cleaning Level 2");
642
643 l1->SetTextJustify(kTextLeft);
644 l2->SetTextJustify(kTextLeft);
645
646 //
647 // Align the text of the label centered, left in the row
648 // with a left padding of 10
649 //
650 TGLayoutHints *laylabel = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 10);
651 TGLayoutHints *layframe = new TGLayoutHints(kLHintsCenterY|kLHintsLeft, 5, 0, 10);
652
653 //
654 // Add one entry field and the corresponding label to each line
655 //
656 f1->AddFrame(entry1);
657 f2->AddFrame(entry2);
658
659 f1->AddFrame(l1, laylabel);
660 f2->AddFrame(l2, laylabel);
661
662 f->AddFrame(f1, layframe);
663 f->AddFrame(f2, layframe);
664
665 f->AddToList(entry1);
666 f->AddToList(entry2);
667 f->AddToList(l1);
668 f->AddToList(l2);
669 f->AddToList(laylabel);
670 f->AddToList(layframe);
671}
672
673// --------------------------------------------------------------------------
674//
675// Process the GUI Events comming from the two text entry fields.
676//
677Bool_t MImgCleanStd::ProcessMessage(Int_t msg, Int_t submsg, Long_t param1, Long_t param2)
678{
679 if (msg!=kC_TEXTENTRY || submsg!=kTE_ENTER)
680 return kTRUE;
681
682 TGTextEntry *txt = (TGTextEntry*)FindWidget(param1);
683
684 if (!txt)
685 return kTRUE;
686
687 Float_t lvl = atof(txt->GetText());
688
689 switch (param1)
690 {
691 case kImgCleanLvl1:
692 fCleanLvl1 = lvl;
693 *fLog << "Cleaning level 1 set to " << lvl << " sigma." << endl;
694 return kTRUE;
695
696 case kImgCleanLvl2:
697 fCleanLvl2 = lvl;
698 *fLog << "Cleaning level 2 set to " << lvl << " sigma." << endl;
699 return kTRUE;
700 }
701
702 return kTRUE;
703}
704
705// --------------------------------------------------------------------------
706//
707// Implementation of SavePrimitive. Used to write the call to a constructor
708// to a macro. In the original root implementation it is used to write
709// gui elements to a macro-file.
710//
711void MImgCleanStd::StreamPrimitive(ofstream &out) const
712{
713 out << " MImgCleanStd " << GetUniqueName() << "(";
714 out << fCleanLvl1 << ", " << fCleanLvl2;
715
716 if (fName!=gsDefName || fTitle!=gsDefTitle)
717 {
718 out << ", \"" << fName << "\"";
719 if (fTitle!=gsDefTitle)
720 out << ", \"" << fTitle << "\"";
721 }
722 out << ");" << endl;
723
724 if (fCleaningMethod!=kDemocratic)
725 return;
726
727 out << " " << GetUniqueName() << ".SetMethod(MImgCleanStd::kDemocratic);" << endl;
728
729 if (fCleanRings==1)
730 return;
731
732 out << " " << GetUniqueName() << ".SetCleanRings(" << fCleanRings << ");" << endl;
733}
Note: See TracBrowser for help on using the repository browser.