| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | !   Author(s): Markus Gaug       09/2004 <mailto:markus@ifae.es> | 
|---|
| 18 | ! | 
|---|
| 19 | !   Copyright: MAGIC Software Development, 2002-2004 | 
|---|
| 20 | ! | 
|---|
| 21 | ! | 
|---|
| 22 | \* ======================================================================== */ | 
|---|
| 23 |  | 
|---|
| 24 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 25 | // | 
|---|
| 26 | //   MExtractTimeAndChargeSpline | 
|---|
| 27 | // | 
|---|
| 28 | //   Fast Spline extractor using a cubic spline algorithm, adapted from | 
|---|
| 29 | //   Numerical Recipes in C++, 2nd edition, pp. 116-119. | 
|---|
| 30 | // | 
|---|
| 31 | //   The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal" | 
|---|
| 32 | //   which means the FADC value subtracted by the clock-noise corrected pedestal. | 
|---|
| 33 | // | 
|---|
| 34 | //   The coefficients "y2a" get immediately divided 6. and are called here | 
|---|
| 35 | //   "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly | 
|---|
| 36 | //   the second derivative coefficients any more. | 
|---|
| 37 | // | 
|---|
| 38 | //   The calculation of the cubic-spline interpolated value "y" on a point | 
|---|
| 39 | //   "x" along the FADC-slices axis becomes: | 
|---|
| 40 | // | 
|---|
| 41 | //   y =    a*fHiGainSignal[klo] + b*fHiGainSignal[khi] | 
|---|
| 42 | //       + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi] | 
|---|
| 43 | // | 
|---|
| 44 | //   with: | 
|---|
| 45 | //   a = (khi - x) | 
|---|
| 46 | //   b = (x - klo) | 
|---|
| 47 | // | 
|---|
| 48 | //   and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index. | 
|---|
| 49 | //   fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi". | 
|---|
| 50 | // | 
|---|
| 51 | //   An analogues formula is used for the low-gain values. | 
|---|
| 52 | // | 
|---|
| 53 | //   The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the | 
|---|
| 54 | //   following simplified algorithm: | 
|---|
| 55 | // | 
|---|
| 56 | //   for (Int_t i=1;i<range-1;i++) { | 
|---|
| 57 | //       pp                   = fHiGainSecondDeriv[i-1] + 4.; | 
|---|
| 58 | //       fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1] | 
|---|
| 59 | //       fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp; | 
|---|
| 60 | //   } | 
|---|
| 61 | // | 
|---|
| 62 | //   for (Int_t k=range-2;k>=0;k--) | 
|---|
| 63 | //       fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.; | 
|---|
| 64 | // | 
|---|
| 65 | // | 
|---|
| 66 | //   This algorithm takes advantage of the fact that the x-values are all separated by exactly 1 | 
|---|
| 67 | //   which simplifies the Numerical Recipes algorithm. | 
|---|
| 68 | //   (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.) | 
|---|
| 69 | // | 
|---|
| 70 | //   The algorithm to search the time proceeds as follows: | 
|---|
| 71 | // | 
|---|
| 72 | //   1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast | 
|---|
| 73 | //      (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of | 
|---|
| 74 | //      the MAGIC FADCs). | 
|---|
| 75 | //   2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos". | 
|---|
| 76 | //   3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst, | 
|---|
| 77 | //      return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here). | 
|---|
| 78 | //   4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array | 
|---|
| 79 | //   5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2. | 
|---|
| 80 | //      If no maximum is found, go to interval fAbMaxPos+1. | 
|---|
| 81 | //      --> 4 function evaluations | 
|---|
| 82 | //   6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2 | 
|---|
| 83 | //      --> 4 function  evaluations | 
|---|
| 84 | //   7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2 | 
|---|
| 85 | //      in steps of 0.025 (83 psec. in the case of the MAGIC FADCs). | 
|---|
| 86 | //      --> 14 function evaluations | 
|---|
| 87 | //   8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is | 
|---|
| 88 | //      returned, else: | 
|---|
| 89 | //   9) The Half Maximum is calculated. | 
|---|
| 90 | //  10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax | 
|---|
| 91 | //      is found at "klo". | 
|---|
| 92 | //  11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as | 
|---|
| 93 | //      the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01). | 
|---|
| 94 | //      --> maximum 12 interations. | 
|---|
| 95 | // | 
|---|
| 96 | //  The algorithm to search the charge proceeds as follows: | 
|---|
| 97 | // | 
|---|
| 98 | //  1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the | 
|---|
| 99 | //     time search. | 
|---|
| 100 | //  2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between: | 
|---|
| 101 | //     (Int_t)(fAbMaxPos - fRiseTimeHiGain) and | 
|---|
| 102 | //     (Int_t)(fAbMaxPos + fFallTimeHiGain) | 
|---|
| 103 | //     (default: fRiseTime: 1.5, fFallTime: 4.5) | 
|---|
| 104 | //                                           sum the fLoGainSignal between: | 
|---|
| 105 | //     (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and | 
|---|
| 106 | //     (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch) | 
|---|
| 107 | //     (default: fLoGainStretch: 1.5) | 
|---|
| 108 | // | 
|---|
| 109 | //  The values: fNumHiGainSamples and fNumLoGainSamples are set to: | 
|---|
| 110 | //  1) If Charge Type: kAmplitude was chosen: 1. | 
|---|
| 111 | //  2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain | 
|---|
| 112 | //                 or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain | 
|---|
| 113 | // | 
|---|
| 114 | //  Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast) | 
|---|
| 115 | //        to modify the ranges. | 
|---|
| 116 | // | 
|---|
| 117 | //        Defaults: | 
|---|
| 118 | //        fHiGainFirst =  2 | 
|---|
| 119 | //        fHiGainLast  =  14 | 
|---|
| 120 | //        fLoGainFirst =  2 | 
|---|
| 121 | //        fLoGainLast  =  14 | 
|---|
| 122 | // | 
|---|
| 123 | //  Call: SetResolution() to define the resolution of the half-maximum search. | 
|---|
| 124 | //        Default: 0.01 | 
|---|
| 125 | // | 
|---|
| 126 | //  Call: SetRiseTime() and SetFallTime() to define the integration ranges | 
|---|
| 127 | //        for the case, the extraction type kIntegral has been chosen. | 
|---|
| 128 | // | 
|---|
| 129 | //  Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the | 
|---|
| 130 | //          computation of the amplitude at the maximum (default) and extraction | 
|---|
| 131 | //          the position of the maximum (default) | 
|---|
| 132 | //          --> no further function evaluation needed | 
|---|
| 133 | //        - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the | 
|---|
| 134 | //          computation of the integral beneith the spline between fRiseTimeHiGain | 
|---|
| 135 | //          from the position of the maximum to fFallTimeHiGain after the position of | 
|---|
| 136 | //          the maximum. The Low Gain is computed with half a slice more at the rising | 
|---|
| 137 | //          edge and half a slice more at the falling edge. | 
|---|
| 138 | //          The time of the half maximum is returned. | 
|---|
| 139 | //          --> needs one function evaluations but is more precise | 
|---|
| 140 | // | 
|---|
| 141 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 142 | #include "MExtractTimeAndChargeSpline.h" | 
|---|
| 143 |  | 
|---|
| 144 | #include "MPedestalPix.h" | 
|---|
| 145 |  | 
|---|
| 146 | #include "MLog.h" | 
|---|
| 147 | #include "MLogManip.h" | 
|---|
| 148 |  | 
|---|
| 149 | ClassImp(MExtractTimeAndChargeSpline); | 
|---|
| 150 |  | 
|---|
| 151 | using namespace std; | 
|---|
| 152 |  | 
|---|
| 153 | const Byte_t  MExtractTimeAndChargeSpline::fgHiGainFirst      = 0; | 
|---|
| 154 | const Byte_t  MExtractTimeAndChargeSpline::fgHiGainLast       = 14; | 
|---|
| 155 | const Byte_t  MExtractTimeAndChargeSpline::fgLoGainFirst      = 1; | 
|---|
| 156 | const Byte_t  MExtractTimeAndChargeSpline::fgLoGainLast       = 14; | 
|---|
| 157 | const Float_t MExtractTimeAndChargeSpline::fgResolution       = 0.05; | 
|---|
| 158 | const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain   = 0.5; | 
|---|
| 159 | const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain   = 0.5; | 
|---|
| 160 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch    = 1.5; | 
|---|
| 161 | const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain     = 1.3; | 
|---|
| 162 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStartShift = -2.4; | 
|---|
| 163 |  | 
|---|
| 164 | // -------------------------------------------------------------------------- | 
|---|
| 165 | // | 
|---|
| 166 | // Default constructor. | 
|---|
| 167 | // | 
|---|
| 168 | // Calls: | 
|---|
| 169 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast) | 
|---|
| 170 | // | 
|---|
| 171 | // Initializes: | 
|---|
| 172 | // - fResolution     to fgResolution | 
|---|
| 173 | // - fRiseTimeHiGain to fgRiseTimeHiGain | 
|---|
| 174 | // - fFallTimeHiGain to fgFallTimeHiGain | 
|---|
| 175 | // - Charge Extraction Type to kAmplitude | 
|---|
| 176 | // - fLoGainStretch  to fgLoGainStretch | 
|---|
| 177 | // | 
|---|
| 178 | MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title) | 
|---|
| 179 | : fAbMax(0.), fAbMaxPos(0.), fHalfMax(0.), | 
|---|
| 180 | fRandomIter(0), fExtractionType(kIntegral) | 
|---|
| 181 | { | 
|---|
| 182 |  | 
|---|
| 183 | fName  = name  ? name  : "MExtractTimeAndChargeSpline"; | 
|---|
| 184 | fTitle = title ? title : "Calculate photons arrival time using a fast spline"; | 
|---|
| 185 |  | 
|---|
| 186 | SetResolution(); | 
|---|
| 187 | SetLoGainStretch(); | 
|---|
| 188 | SetOffsetLoGain(fgOffsetLoGain); | 
|---|
| 189 | SetLoGainStartShift(fgLoGainStartShift); | 
|---|
| 190 |  | 
|---|
| 191 | SetRiseTimeHiGain(); | 
|---|
| 192 | SetFallTimeHiGain(); | 
|---|
| 193 |  | 
|---|
| 194 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 |  | 
|---|
| 198 | //------------------------------------------------------------------- | 
|---|
| 199 | // | 
|---|
| 200 | // Set the ranges | 
|---|
| 201 | // In order to set the fNum...Samples variables correctly for the case, | 
|---|
| 202 | // the integral is computed, have to overwrite this function and make an | 
|---|
| 203 | // explicit call to SetChargeType(). | 
|---|
| 204 | // | 
|---|
| 205 | void MExtractTimeAndChargeSpline::SetRange(Byte_t hifirst, Byte_t hilast, Byte_t lofirst, Byte_t lolast) | 
|---|
| 206 | { | 
|---|
| 207 |  | 
|---|
| 208 | MExtractor::SetRange(hifirst, hilast, lofirst, lolast); | 
|---|
| 209 |  | 
|---|
| 210 | SetChargeType(fExtractionType); | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | //------------------------------------------------------------------- | 
|---|
| 214 | // | 
|---|
| 215 | // Set the Charge Extraction type. Possible are: | 
|---|
| 216 | // - kAmplitude: Search the value of the spline at the maximum | 
|---|
| 217 | // - kIntegral:  Integral the spline from fHiGainFirst to fHiGainLast, | 
|---|
| 218 | //               by counting the edge bins only half and setting the | 
|---|
| 219 | //               second derivative to zero, there. | 
|---|
| 220 | // | 
|---|
| 221 | void MExtractTimeAndChargeSpline::SetChargeType( ExtractionType_t typ ) | 
|---|
| 222 | { | 
|---|
| 223 |  | 
|---|
| 224 | fExtractionType = typ; | 
|---|
| 225 |  | 
|---|
| 226 | if (fExtractionType == kAmplitude) | 
|---|
| 227 | { | 
|---|
| 228 | fNumHiGainSamples = 1.; | 
|---|
| 229 | fNumLoGainSamples = fLoGainLast ? 1. : 0.; | 
|---|
| 230 | fSqrtHiGainSamples = 1.; | 
|---|
| 231 | fSqrtLoGainSamples = 1.; | 
|---|
| 232 | fWindowSizeHiGain  = 1; | 
|---|
| 233 | fWindowSizeLoGain  = 1; | 
|---|
| 234 | fRiseTimeHiGain    = 0.5; | 
|---|
| 235 |  | 
|---|
| 236 | SetResolutionPerPheHiGain(0.053); | 
|---|
| 237 | SetResolutionPerPheLoGain(0.016); | 
|---|
| 238 |  | 
|---|
| 239 | return; | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | if (fExtractionType == kIntegral) | 
|---|
| 243 | { | 
|---|
| 244 |  | 
|---|
| 245 | fNumHiGainSamples  = fRiseTimeHiGain + fFallTimeHiGain; | 
|---|
| 246 | fNumLoGainSamples  = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; | 
|---|
| 247 |  | 
|---|
| 248 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); | 
|---|
| 249 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); | 
|---|
| 250 | fWindowSizeHiGain  = TMath::Nint(fRiseTimeHiGain + fFallTimeHiGain); | 
|---|
| 251 | // to ensure that for the case: 1.5, the window size becomes: 2 (at any compiler) | 
|---|
| 252 | fWindowSizeLoGain  = TMath::Nint(TMath::Ceil((fRiseTimeLoGain + fFallTimeLoGain)*fLoGainStretch)); | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 | switch (fWindowSizeHiGain) | 
|---|
| 256 | { | 
|---|
| 257 | case 1: | 
|---|
| 258 | SetResolutionPerPheHiGain(0.041); | 
|---|
| 259 | break; | 
|---|
| 260 | case 2: | 
|---|
| 261 | SetResolutionPerPheHiGain(0.064); | 
|---|
| 262 | break; | 
|---|
| 263 | case 3: | 
|---|
| 264 | case 4: | 
|---|
| 265 | SetResolutionPerPheHiGain(0.050); | 
|---|
| 266 | break; | 
|---|
| 267 | case 5: | 
|---|
| 268 | case 6: | 
|---|
| 269 | SetResolutionPerPheHiGain(0.030); | 
|---|
| 270 | break; | 
|---|
| 271 | default: | 
|---|
| 272 | *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size " | 
|---|
| 273 | << fWindowSizeHiGain << endl; | 
|---|
| 274 | break; | 
|---|
| 275 | } | 
|---|
| 276 |  | 
|---|
| 277 | switch (fWindowSizeLoGain) | 
|---|
| 278 | { | 
|---|
| 279 | case 1: | 
|---|
| 280 | case 2: | 
|---|
| 281 | SetResolutionPerPheLoGain(0.005); | 
|---|
| 282 | break; | 
|---|
| 283 | case 3: | 
|---|
| 284 | case 4: | 
|---|
| 285 | SetResolutionPerPheLoGain(0.017); | 
|---|
| 286 | break; | 
|---|
| 287 | case 5: | 
|---|
| 288 | case 6: | 
|---|
| 289 | case 7: | 
|---|
| 290 | SetResolutionPerPheLoGain(0.005); | 
|---|
| 291 | break; | 
|---|
| 292 | case 8: | 
|---|
| 293 | case 9: | 
|---|
| 294 | SetResolutionPerPheLoGain(0.005); | 
|---|
| 295 | break; | 
|---|
| 296 | default: | 
|---|
| 297 | *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size " | 
|---|
| 298 | << fWindowSizeLoGain << endl; | 
|---|
| 299 | break; | 
|---|
| 300 | } | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | // -------------------------------------------------------------------------- | 
|---|
| 304 | // | 
|---|
| 305 | // InitArrays | 
|---|
| 306 | // | 
|---|
| 307 | // Gets called in the ReInit() and initialized the arrays | 
|---|
| 308 | // | 
|---|
| 309 | Bool_t MExtractTimeAndChargeSpline::InitArrays() | 
|---|
| 310 | { | 
|---|
| 311 |  | 
|---|
| 312 | Int_t range = fHiGainLast - fHiGainFirst + 1 + fHiLoLast; | 
|---|
| 313 |  | 
|---|
| 314 | fHiGainSignal     .Set(range); | 
|---|
| 315 | fHiGainFirstDeriv .Set(range); | 
|---|
| 316 | fHiGainSecondDeriv.Set(range); | 
|---|
| 317 |  | 
|---|
| 318 | range = fLoGainLast - fLoGainFirst + 1; | 
|---|
| 319 |  | 
|---|
| 320 | fLoGainSignal     .Set(range); | 
|---|
| 321 | fLoGainFirstDeriv .Set(range); | 
|---|
| 322 | fLoGainSecondDeriv.Set(range); | 
|---|
| 323 |  | 
|---|
| 324 | fHiGainSignal     .Reset(); | 
|---|
| 325 | fHiGainFirstDeriv .Reset(); | 
|---|
| 326 | fHiGainSecondDeriv.Reset(); | 
|---|
| 327 |  | 
|---|
| 328 | fLoGainSignal     .Reset(); | 
|---|
| 329 | fLoGainFirstDeriv .Reset(); | 
|---|
| 330 | fLoGainSecondDeriv.Reset(); | 
|---|
| 331 |  | 
|---|
| 332 | if (fExtractionType == kAmplitude) | 
|---|
| 333 | { | 
|---|
| 334 | fNumHiGainSamples = 1.; | 
|---|
| 335 | fNumLoGainSamples = fLoGainLast ? 1. : 0.; | 
|---|
| 336 | fSqrtHiGainSamples = 1.; | 
|---|
| 337 | fSqrtLoGainSamples = 1.; | 
|---|
| 338 | fWindowSizeHiGain  = 1; | 
|---|
| 339 | fWindowSizeLoGain  = 1; | 
|---|
| 340 | fRiseTimeHiGain    = 0.5; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | fRiseTimeLoGain    = fRiseTimeHiGain * fLoGainStretch; | 
|---|
| 344 | fFallTimeLoGain    = fFallTimeHiGain * fLoGainStretch; | 
|---|
| 345 |  | 
|---|
| 346 | if (fExtractionType == kIntegral) | 
|---|
| 347 | { | 
|---|
| 348 |  | 
|---|
| 349 | fNumHiGainSamples  = fRiseTimeHiGain + fFallTimeHiGain; | 
|---|
| 350 | fNumLoGainSamples  = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.; | 
|---|
| 351 | //      fNumLoGainSamples  *= 0.75; | 
|---|
| 352 |  | 
|---|
| 353 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples); | 
|---|
| 354 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples); | 
|---|
| 355 | fWindowSizeHiGain  = (Int_t)(fRiseTimeHiGain + fFallTimeHiGain); | 
|---|
| 356 | fWindowSizeLoGain  = (Int_t)(fRiseTimeLoGain + fFallTimeLoGain); | 
|---|
| 357 | } | 
|---|
| 358 |  | 
|---|
| 359 | return kTRUE; | 
|---|
| 360 |  | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | // -------------------------------------------------------------------------- | 
|---|
| 364 | // | 
|---|
| 365 | // Calculates the arrival time and charge for each pixel | 
|---|
| 366 | // | 
|---|
| 367 | void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain(Byte_t *first, Byte_t *logain, Float_t &sum, Float_t &dsum, | 
|---|
| 368 | Float_t &time, Float_t &dtime, | 
|---|
| 369 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) | 
|---|
| 370 | { | 
|---|
| 371 | Int_t range = fHiGainLast - fHiGainFirst + 1; | 
|---|
| 372 | const Byte_t *end = first + range; | 
|---|
| 373 | Byte_t       *p  = first; | 
|---|
| 374 |  | 
|---|
| 375 | sat = 0; | 
|---|
| 376 | dsum = 0; // In all cases the extracted signal is valid | 
|---|
| 377 |  | 
|---|
| 378 | const Float_t pedes  = ped.GetPedestal(); | 
|---|
| 379 | const Float_t ABoffs = ped.GetPedestalABoffset(); | 
|---|
| 380 |  | 
|---|
| 381 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs }; | 
|---|
| 382 |  | 
|---|
| 383 | fAbMax         = 0.; | 
|---|
| 384 | fAbMaxPos      = 0.; | 
|---|
| 385 | fHalfMax       = 0.; | 
|---|
| 386 | fMaxBinContent = 0; | 
|---|
| 387 | Int_t  maxpos  = 0; | 
|---|
| 388 |  | 
|---|
| 389 | // | 
|---|
| 390 | // Check for saturation in all other slices | 
|---|
| 391 | // | 
|---|
| 392 | Int_t ids = fHiGainFirst; | 
|---|
| 393 | Float_t *sample = fHiGainSignal.GetArray(); | 
|---|
| 394 | while (p<end) | 
|---|
| 395 | { | 
|---|
| 396 |  | 
|---|
| 397 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1]; | 
|---|
| 398 |  | 
|---|
| 399 | if (*p > fMaxBinContent) | 
|---|
| 400 | { | 
|---|
| 401 | maxpos = ids-fHiGainFirst-1; | 
|---|
| 402 | // range-fWindowSizeHiGain+1 == fHiLoLast isn't it? | 
|---|
| 403 | if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1)) | 
|---|
| 404 | fMaxBinContent = *p; | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | if (*p++ >= fSaturationLimit) | 
|---|
| 408 | if (!sat) | 
|---|
| 409 | sat = ids-fHiGainFirst; | 
|---|
| 410 |  | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | if (fHiLoLast != 0) | 
|---|
| 414 | { | 
|---|
| 415 |  | 
|---|
| 416 | end = logain + fHiLoLast; | 
|---|
| 417 |  | 
|---|
| 418 | while (logain<end) | 
|---|
| 419 | { | 
|---|
| 420 |  | 
|---|
| 421 | *sample++ = (Float_t)*logain - pedmean[(ids++ + abflag) & 0x1]; | 
|---|
| 422 |  | 
|---|
| 423 | if (*logain > fMaxBinContent) | 
|---|
| 424 | { | 
|---|
| 425 | maxpos = ids-fHiGainFirst-1; | 
|---|
| 426 | // range-fWindowSizeHiGain+1 == fHiLoLast isn't it? | 
|---|
| 427 | //if (maxpos > 1 && maxpos < (range - fWindowSizeHiGain + 1)) | 
|---|
| 428 | //    fMaxBinContent = *logain; | 
|---|
| 429 | } | 
|---|
| 430 |  | 
|---|
| 431 | if (*logain++ >= fSaturationLimit) | 
|---|
| 432 | if (!sat) | 
|---|
| 433 | sat = ids-fHiGainFirst; | 
|---|
| 434 |  | 
|---|
| 435 | range++; | 
|---|
| 436 | } | 
|---|
| 437 | } | 
|---|
| 438 |  | 
|---|
| 439 | fAbMax = fHiGainSignal[maxpos]; | 
|---|
| 440 |  | 
|---|
| 441 | fHiGainSecondDeriv[0] = 0.; | 
|---|
| 442 | fHiGainFirstDeriv[0]  = 0.; | 
|---|
| 443 |  | 
|---|
| 444 | for (Int_t i=1;i<range-1;i++) | 
|---|
| 445 | { | 
|---|
| 446 | const Float_t pp = fHiGainSecondDeriv[i-1] + 4.; | 
|---|
| 447 | fHiGainSecondDeriv[i] = -1.0/pp; | 
|---|
| 448 | fHiGainFirstDeriv [i] = fHiGainSignal[i+1] - 2*fHiGainSignal[i] + fHiGainSignal[i-1]; | 
|---|
| 449 | fHiGainFirstDeriv [i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp; | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | fHiGainSecondDeriv[range-1] = 0.; | 
|---|
| 453 |  | 
|---|
| 454 | for (Int_t k=range-2;k>=0;k--) | 
|---|
| 455 | fHiGainSecondDeriv[k] = fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k]; | 
|---|
| 456 | for (Int_t k=range-2;k>=0;k--) | 
|---|
| 457 | fHiGainSecondDeriv[k] /= 6.; | 
|---|
| 458 |  | 
|---|
| 459 | if (IsNoiseCalculation()) | 
|---|
| 460 | { | 
|---|
| 461 |  | 
|---|
| 462 | if (fRandomIter == int(1./fResolution)) | 
|---|
| 463 | fRandomIter = 0; | 
|---|
| 464 |  | 
|---|
| 465 | const Float_t nsx = fRandomIter * fResolution; | 
|---|
| 466 |  | 
|---|
| 467 | if (fExtractionType == kAmplitude) | 
|---|
| 468 | { | 
|---|
| 469 | const Float_t b = nsx; | 
|---|
| 470 | const Float_t a = 1. - nsx; | 
|---|
| 471 |  | 
|---|
| 472 | sum = a*fHiGainSignal[1] | 
|---|
| 473 | + b*fHiGainSignal[2] | 
|---|
| 474 | + (a*a*a-a)*fHiGainSecondDeriv[1] | 
|---|
| 475 | + (b*b*b-b)*fHiGainSecondDeriv[2]; | 
|---|
| 476 | } | 
|---|
| 477 | else | 
|---|
| 478 | sum = CalcIntegralHiGain(2. + nsx, range); | 
|---|
| 479 |  | 
|---|
| 480 | fRandomIter++; | 
|---|
| 481 | return; | 
|---|
| 482 | } | 
|---|
| 483 |  | 
|---|
| 484 | // | 
|---|
| 485 | // Allow no saturated slice and | 
|---|
| 486 | // Don't start if the maxpos is too close to the limits. | 
|---|
| 487 | // | 
|---|
| 488 | const Bool_t limlo = maxpos <       TMath::Ceil(fRiseTimeHiGain); | 
|---|
| 489 | const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeHiGain)-1; | 
|---|
| 490 | if (sat || limlo || limup) | 
|---|
| 491 | { | 
|---|
| 492 | dtime = 1.0; | 
|---|
| 493 | if (fExtractionType == kAmplitude) | 
|---|
| 494 | { | 
|---|
| 495 | sum  = fAbMax; | 
|---|
| 496 | time = (Float_t)(fHiGainFirst + maxpos); | 
|---|
| 497 | return; | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | sum  = CalcIntegralHiGain(limlo ? 0 : range, range); | 
|---|
| 501 | time = (Float_t)(fHiGainFirst + maxpos - 1); | 
|---|
| 502 | return; | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | dtime = fResolution; | 
|---|
| 506 |  | 
|---|
| 507 | // | 
|---|
| 508 | // Now find the maximum | 
|---|
| 509 | // | 
|---|
| 510 | Float_t step    = 0.2; // start with step size of 1ns and loop again with the smaller one | 
|---|
| 511 | Float_t lower   = -1. + maxpos; | 
|---|
| 512 | Float_t upper   = (Float_t)maxpos; | 
|---|
| 513 | fAbMaxPos       = upper; | 
|---|
| 514 | Float_t x       = lower; | 
|---|
| 515 | Float_t y       = 0.; | 
|---|
| 516 | Float_t a       = 1.; | 
|---|
| 517 | Float_t b       = 0.; | 
|---|
| 518 | Int_t   klo     = maxpos-1; | 
|---|
| 519 | Int_t   khi     = maxpos; | 
|---|
| 520 |  | 
|---|
| 521 | // | 
|---|
| 522 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. | 
|---|
| 523 | // If no maximum is found, go to interval maxpos+1. | 
|---|
| 524 | // | 
|---|
| 525 | while ( x < upper - 0.3 ) | 
|---|
| 526 | { | 
|---|
| 527 |  | 
|---|
| 528 | x += step; | 
|---|
| 529 | a -= step; | 
|---|
| 530 | b += step; | 
|---|
| 531 |  | 
|---|
| 532 | y = a*fHiGainSignal[klo] | 
|---|
| 533 | + b*fHiGainSignal[khi] | 
|---|
| 534 | + (a*a*a-a)*fHiGainSecondDeriv[klo] | 
|---|
| 535 | + (b*b*b-b)*fHiGainSecondDeriv[khi]; | 
|---|
| 536 |  | 
|---|
| 537 | if (y > fAbMax) | 
|---|
| 538 | { | 
|---|
| 539 | fAbMax    = y; | 
|---|
| 540 | fAbMaxPos = x; | 
|---|
| 541 | } | 
|---|
| 542 |  | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | // | 
|---|
| 546 | // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2 | 
|---|
| 547 | // | 
|---|
| 548 | if (fAbMaxPos > upper-0.1) | 
|---|
| 549 | { | 
|---|
| 550 | upper   = 1. + maxpos; | 
|---|
| 551 | lower   = (Float_t)maxpos; | 
|---|
| 552 | x       = lower; | 
|---|
| 553 | a       = 1.; | 
|---|
| 554 | b       = 0.; | 
|---|
| 555 | khi     = maxpos+1; | 
|---|
| 556 | klo     = maxpos; | 
|---|
| 557 |  | 
|---|
| 558 | while (x<upper-0.3) | 
|---|
| 559 | { | 
|---|
| 560 |  | 
|---|
| 561 | x += step; | 
|---|
| 562 | a -= step; | 
|---|
| 563 | b += step; | 
|---|
| 564 |  | 
|---|
| 565 | y = a*fHiGainSignal[klo] | 
|---|
| 566 | + b*fHiGainSignal[khi] | 
|---|
| 567 | + (a*a*a-a)*fHiGainSecondDeriv[klo] | 
|---|
| 568 | + (b*b*b-b)*fHiGainSecondDeriv[khi]; | 
|---|
| 569 |  | 
|---|
| 570 | if (y > fAbMax) | 
|---|
| 571 | { | 
|---|
| 572 | fAbMax    = y; | 
|---|
| 573 | fAbMaxPos = x; | 
|---|
| 574 | } | 
|---|
| 575 | } | 
|---|
| 576 | } | 
|---|
| 577 | // | 
|---|
| 578 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. | 
|---|
| 579 | // Try a better precision. | 
|---|
| 580 | // | 
|---|
| 581 | const Float_t up = fAbMaxPos+step - 3.0*fResolution; | 
|---|
| 582 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution; | 
|---|
| 583 | const Float_t maxpossave = fAbMaxPos; | 
|---|
| 584 |  | 
|---|
| 585 | x     = fAbMaxPos; | 
|---|
| 586 | a     = upper - x; | 
|---|
| 587 | b     = x - lower; | 
|---|
| 588 |  | 
|---|
| 589 | step  = 2.*fResolution; // step size of 0.1 FADC slices | 
|---|
| 590 |  | 
|---|
| 591 | while (x<up) | 
|---|
| 592 | { | 
|---|
| 593 |  | 
|---|
| 594 | x += step; | 
|---|
| 595 | a -= step; | 
|---|
| 596 | b += step; | 
|---|
| 597 |  | 
|---|
| 598 | y = a*fHiGainSignal[klo] | 
|---|
| 599 | + b*fHiGainSignal[khi] | 
|---|
| 600 | + (a*a*a-a)*fHiGainSecondDeriv[klo] | 
|---|
| 601 | + (b*b*b-b)*fHiGainSecondDeriv[khi]; | 
|---|
| 602 |  | 
|---|
| 603 | if (y > fAbMax) | 
|---|
| 604 | { | 
|---|
| 605 | fAbMax    = y; | 
|---|
| 606 | fAbMaxPos = x; | 
|---|
| 607 | } | 
|---|
| 608 | } | 
|---|
| 609 |  | 
|---|
| 610 | // | 
|---|
| 611 | // Second, try from time down to time-0.2 in steps of fResolution. | 
|---|
| 612 | // | 
|---|
| 613 | x     = maxpossave; | 
|---|
| 614 |  | 
|---|
| 615 | // | 
|---|
| 616 | // Test the possibility that the absolute maximum has not been found between | 
|---|
| 617 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos | 
|---|
| 618 | // which requires new setting of klocont and khicont | 
|---|
| 619 | // | 
|---|
| 620 | if (x < lower + fResolution) | 
|---|
| 621 | { | 
|---|
| 622 | klo--; | 
|---|
| 623 | khi--; | 
|---|
| 624 | upper -= 1.; | 
|---|
| 625 | lower -= 1.; | 
|---|
| 626 | } | 
|---|
| 627 |  | 
|---|
| 628 | a     = upper - x; | 
|---|
| 629 | b     = x - lower; | 
|---|
| 630 |  | 
|---|
| 631 | while (x>lo) | 
|---|
| 632 | { | 
|---|
| 633 |  | 
|---|
| 634 | x -= step; | 
|---|
| 635 | a += step; | 
|---|
| 636 | b -= step; | 
|---|
| 637 |  | 
|---|
| 638 | y = a*fHiGainSignal[klo] | 
|---|
| 639 | + b*fHiGainSignal[khi] | 
|---|
| 640 | + (a*a*a-a)*fHiGainSecondDeriv[klo] | 
|---|
| 641 | + (b*b*b-b)*fHiGainSecondDeriv[khi]; | 
|---|
| 642 |  | 
|---|
| 643 | if (y > fAbMax) | 
|---|
| 644 | { | 
|---|
| 645 | fAbMax    = y; | 
|---|
| 646 | fAbMaxPos = x; | 
|---|
| 647 | } | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | if (fExtractionType == kAmplitude) | 
|---|
| 651 | { | 
|---|
| 652 | time  = fAbMaxPos + (Int_t)fHiGainFirst; | 
|---|
| 653 | sum   = fAbMax; | 
|---|
| 654 | return; | 
|---|
| 655 | } | 
|---|
| 656 |  | 
|---|
| 657 | fHalfMax = fAbMax/2.; | 
|---|
| 658 |  | 
|---|
| 659 | // | 
|---|
| 660 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. | 
|---|
| 661 | // First, find the right FADC slice: | 
|---|
| 662 | // | 
|---|
| 663 | klo  = maxpos; | 
|---|
| 664 | while (klo > 0) | 
|---|
| 665 | { | 
|---|
| 666 | if (fHiGainSignal[--klo] < fHalfMax) | 
|---|
| 667 | break; | 
|---|
| 668 | } | 
|---|
| 669 |  | 
|---|
| 670 | khi = klo+1; | 
|---|
| 671 | // | 
|---|
| 672 | // Loop from the beginning of the slice upwards to reach the fHalfMax: | 
|---|
| 673 | // With means of bisection: | 
|---|
| 674 | // | 
|---|
| 675 | x     = (Float_t)klo; | 
|---|
| 676 | a     = 1.; | 
|---|
| 677 | b     = 0.; | 
|---|
| 678 |  | 
|---|
| 679 | step = 0.5; | 
|---|
| 680 | Bool_t back = kFALSE; | 
|---|
| 681 |  | 
|---|
| 682 | Int_t maxcnt = 20; | 
|---|
| 683 | Int_t cnt    = 0; | 
|---|
| 684 |  | 
|---|
| 685 | while (TMath::Abs(y-fHalfMax) > fResolution) | 
|---|
| 686 | { | 
|---|
| 687 |  | 
|---|
| 688 | if (back) | 
|---|
| 689 | { | 
|---|
| 690 | x -= step; | 
|---|
| 691 | a += step; | 
|---|
| 692 | b -= step; | 
|---|
| 693 | } | 
|---|
| 694 | else | 
|---|
| 695 | { | 
|---|
| 696 | x += step; | 
|---|
| 697 | a -= step; | 
|---|
| 698 | b += step; | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | y = a*fHiGainSignal[klo] | 
|---|
| 702 | + b*fHiGainSignal[khi] | 
|---|
| 703 | + (a*a*a-a)*fHiGainSecondDeriv[klo] | 
|---|
| 704 | + (b*b*b-b)*fHiGainSecondDeriv[khi]; | 
|---|
| 705 |  | 
|---|
| 706 | back = y > fHalfMax; | 
|---|
| 707 |  | 
|---|
| 708 | if (++cnt > maxcnt) | 
|---|
| 709 | break; | 
|---|
| 710 |  | 
|---|
| 711 | step /= 2.; | 
|---|
| 712 | } | 
|---|
| 713 |  | 
|---|
| 714 | // | 
|---|
| 715 | // Now integrate the whole thing! | 
|---|
| 716 | // | 
|---|
| 717 | time = (Float_t)fHiGainFirst + x; | 
|---|
| 718 | sum  = CalcIntegralHiGain(fAbMaxPos - fRiseTimeHiGain, range); | 
|---|
| 719 | } | 
|---|
| 720 |  | 
|---|
| 721 |  | 
|---|
| 722 | // -------------------------------------------------------------------------- | 
|---|
| 723 | // | 
|---|
| 724 | // Calculates the arrival time and charge for each pixel | 
|---|
| 725 | // | 
|---|
| 726 | void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain(Byte_t *first, Float_t &sum, Float_t &dsum, | 
|---|
| 727 | Float_t &time, Float_t &dtime, | 
|---|
| 728 | Byte_t &sat, const MPedestalPix &ped, const Bool_t abflag) | 
|---|
| 729 | { | 
|---|
| 730 | Int_t range = fLoGainLast - fLoGainFirst + 1; | 
|---|
| 731 | const Byte_t *end = first + range; | 
|---|
| 732 | Byte_t       *p  = first; | 
|---|
| 733 |  | 
|---|
| 734 | const Float_t pedes  = ped.GetPedestal(); | 
|---|
| 735 | const Float_t ABoffs = ped.GetPedestalABoffset(); | 
|---|
| 736 |  | 
|---|
| 737 | const Float_t pedmean[2] = { pedes + ABoffs, pedes - ABoffs }; | 
|---|
| 738 |  | 
|---|
| 739 | fAbMax        = 0.; | 
|---|
| 740 | fAbMaxPos     = 0.; | 
|---|
| 741 | Int_t  maxpos = 0; | 
|---|
| 742 | Int_t  max    = -9999; | 
|---|
| 743 |  | 
|---|
| 744 | dsum = 0; // In all cases the extracted signal is valid | 
|---|
| 745 |  | 
|---|
| 746 | // | 
|---|
| 747 | // Check for saturation in all other slices | 
|---|
| 748 | // | 
|---|
| 749 | Int_t    ids    = fLoGainFirst; | 
|---|
| 750 | Float_t *sample = fLoGainSignal.GetArray(); | 
|---|
| 751 | while (p<end) | 
|---|
| 752 | { | 
|---|
| 753 |  | 
|---|
| 754 | *sample++ = (Float_t)*p - pedmean[(ids++ + abflag) & 0x1]; | 
|---|
| 755 |  | 
|---|
| 756 | if (*p > max) | 
|---|
| 757 | { | 
|---|
| 758 | maxpos = ids-fLoGainFirst-1; | 
|---|
| 759 | max    = *p; | 
|---|
| 760 | } | 
|---|
| 761 |  | 
|---|
| 762 | if (*p++ >= fSaturationLimit) | 
|---|
| 763 | sat++; | 
|---|
| 764 | } | 
|---|
| 765 |  | 
|---|
| 766 | fAbMax = fLoGainSignal[maxpos]; | 
|---|
| 767 |  | 
|---|
| 768 | fLoGainSecondDeriv[0] = 0.; | 
|---|
| 769 | fLoGainFirstDeriv[0]  = 0.; | 
|---|
| 770 |  | 
|---|
| 771 | for (Int_t i=1;i<range-1;i++) | 
|---|
| 772 | { | 
|---|
| 773 | const Float_t pp = fLoGainSecondDeriv[i-1] + 4.; | 
|---|
| 774 | fLoGainSecondDeriv[i] = -1.0/pp; | 
|---|
| 775 | fLoGainFirstDeriv [i] = fLoGainSignal[i+1] - 2*fLoGainSignal[i] + fLoGainSignal[i-1]; | 
|---|
| 776 | fLoGainFirstDeriv [i] = (6.0*fLoGainFirstDeriv[i]-fLoGainFirstDeriv[i-1])/pp; | 
|---|
| 777 | } | 
|---|
| 778 |  | 
|---|
| 779 | fLoGainSecondDeriv[range-1] = 0.; | 
|---|
| 780 |  | 
|---|
| 781 | for (Int_t k=range-2;k>=0;k--) | 
|---|
| 782 | fLoGainSecondDeriv[k] = fLoGainSecondDeriv[k]*fLoGainSecondDeriv[k+1] + fLoGainFirstDeriv[k]; | 
|---|
| 783 | for (Int_t k=range-2;k>=0;k--) | 
|---|
| 784 | fLoGainSecondDeriv[k] /= 6.; | 
|---|
| 785 |  | 
|---|
| 786 | if (IsNoiseCalculation()) | 
|---|
| 787 | { | 
|---|
| 788 | if (fRandomIter == int(1./fResolution)) | 
|---|
| 789 | fRandomIter = 0; | 
|---|
| 790 |  | 
|---|
| 791 | const Float_t nsx = fRandomIter * fResolution; | 
|---|
| 792 |  | 
|---|
| 793 | if (fExtractionType == kAmplitude) | 
|---|
| 794 | { | 
|---|
| 795 | const Float_t b = nsx; | 
|---|
| 796 | const Float_t a = 1. - nsx; | 
|---|
| 797 |  | 
|---|
| 798 | sum = a*fLoGainSignal[1] | 
|---|
| 799 | + b*fLoGainSignal[2] | 
|---|
| 800 | + (a*a*a-a)*fLoGainSecondDeriv[1] | 
|---|
| 801 | + (b*b*b-b)*fLoGainSecondDeriv[2]; | 
|---|
| 802 | } | 
|---|
| 803 | else | 
|---|
| 804 | sum = CalcIntegralLoGain(2. + nsx, range); | 
|---|
| 805 |  | 
|---|
| 806 | fRandomIter++; | 
|---|
| 807 | return; | 
|---|
| 808 | } | 
|---|
| 809 | // | 
|---|
| 810 | // Allow no saturated slice and | 
|---|
| 811 | // Don't start if the maxpos is too close to the limits. | 
|---|
| 812 | // | 
|---|
| 813 | const Bool_t limlo = maxpos <       TMath::Ceil(fRiseTimeLoGain); | 
|---|
| 814 | const Bool_t limup = maxpos > range-TMath::Ceil(fFallTimeLoGain)-1; | 
|---|
| 815 | if (sat || limlo || limup) | 
|---|
| 816 | { | 
|---|
| 817 | dtime = 1.0; | 
|---|
| 818 | if (fExtractionType == kAmplitude) | 
|---|
| 819 | { | 
|---|
| 820 | time = (Float_t)(fLoGainFirst + maxpos); | 
|---|
| 821 | sum = fAbMax; | 
|---|
| 822 | return; | 
|---|
| 823 | } | 
|---|
| 824 |  | 
|---|
| 825 | sum  = CalcIntegralLoGain(limlo ? 0 : range, range); | 
|---|
| 826 | time = (Float_t)(fLoGainFirst + maxpos - 1); | 
|---|
| 827 | return; | 
|---|
| 828 | } | 
|---|
| 829 |  | 
|---|
| 830 | dtime = fResolution; | 
|---|
| 831 |  | 
|---|
| 832 | // | 
|---|
| 833 | // Now find the maximum | 
|---|
| 834 | // | 
|---|
| 835 | Float_t step    = 0.2; // start with step size of 1ns and loop again with the smaller one | 
|---|
| 836 | Float_t lower   = -1. + maxpos; | 
|---|
| 837 | Float_t upper   = (Float_t)maxpos; | 
|---|
| 838 | fAbMaxPos       = upper; | 
|---|
| 839 | Float_t x       = lower; | 
|---|
| 840 | Float_t y       = 0.; | 
|---|
| 841 | Float_t a       = 1.; | 
|---|
| 842 | Float_t b       = 0.; | 
|---|
| 843 | Int_t   klo     = maxpos-1; | 
|---|
| 844 | Int_t   khi     = maxpos; | 
|---|
| 845 |  | 
|---|
| 846 | // | 
|---|
| 847 | // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2. | 
|---|
| 848 | // If no maximum is found, go to interval maxpos+1. | 
|---|
| 849 | // | 
|---|
| 850 | while ( x < upper - 0.3 ) | 
|---|
| 851 | { | 
|---|
| 852 |  | 
|---|
| 853 | x += step; | 
|---|
| 854 | a -= step; | 
|---|
| 855 | b += step; | 
|---|
| 856 |  | 
|---|
| 857 | y = a*fLoGainSignal[klo] | 
|---|
| 858 | + b*fLoGainSignal[khi] | 
|---|
| 859 | + (a*a*a-a)*fLoGainSecondDeriv[klo] | 
|---|
| 860 | + (b*b*b-b)*fLoGainSecondDeriv[khi]; | 
|---|
| 861 |  | 
|---|
| 862 | if (y > fAbMax) | 
|---|
| 863 | { | 
|---|
| 864 | fAbMax    = y; | 
|---|
| 865 | fAbMaxPos = x; | 
|---|
| 866 | } | 
|---|
| 867 |  | 
|---|
| 868 | } | 
|---|
| 869 |  | 
|---|
| 870 | // | 
|---|
| 871 | // Test the possibility that the absolute maximum has not been found before the | 
|---|
| 872 | // maxpos and search from maxpos to maxpos+1 in steps of 0.2 | 
|---|
| 873 | // | 
|---|
| 874 | if (fAbMaxPos > upper-0.1) | 
|---|
| 875 | { | 
|---|
| 876 |  | 
|---|
| 877 | upper   = 1. + maxpos; | 
|---|
| 878 | lower   = (Float_t)maxpos; | 
|---|
| 879 | x       = lower; | 
|---|
| 880 | a       = 1.; | 
|---|
| 881 | b       = 0.; | 
|---|
| 882 | khi     = maxpos+1; | 
|---|
| 883 | klo     = maxpos; | 
|---|
| 884 |  | 
|---|
| 885 | while (x<upper-0.3) | 
|---|
| 886 | { | 
|---|
| 887 |  | 
|---|
| 888 | x += step; | 
|---|
| 889 | a -= step; | 
|---|
| 890 | b += step; | 
|---|
| 891 |  | 
|---|
| 892 | y = a*fLoGainSignal[klo] | 
|---|
| 893 | + b*fLoGainSignal[khi] | 
|---|
| 894 | + (a*a*a-a)*fLoGainSecondDeriv[klo] | 
|---|
| 895 | + (b*b*b-b)*fLoGainSecondDeriv[khi]; | 
|---|
| 896 |  | 
|---|
| 897 | if (y > fAbMax) | 
|---|
| 898 | { | 
|---|
| 899 | fAbMax    = y; | 
|---|
| 900 | fAbMaxPos = x; | 
|---|
| 901 | } | 
|---|
| 902 | } | 
|---|
| 903 | } | 
|---|
| 904 |  | 
|---|
| 905 |  | 
|---|
| 906 | // | 
|---|
| 907 | // Now, the time, abmax and khicont and klocont are set correctly within the previous precision. | 
|---|
| 908 | // Try a better precision. | 
|---|
| 909 | // | 
|---|
| 910 | const Float_t up = fAbMaxPos+step - 3.0*fResolution; | 
|---|
| 911 | const Float_t lo = fAbMaxPos-step + 3.0*fResolution; | 
|---|
| 912 | const Float_t maxpossave = fAbMaxPos; | 
|---|
| 913 |  | 
|---|
| 914 | x     = fAbMaxPos; | 
|---|
| 915 | a     = upper - x; | 
|---|
| 916 | b     = x - lower; | 
|---|
| 917 |  | 
|---|
| 918 | step  = 2.*fResolution; // step size of 0.1 FADC slice | 
|---|
| 919 |  | 
|---|
| 920 | while (x<up) | 
|---|
| 921 | { | 
|---|
| 922 |  | 
|---|
| 923 | x += step; | 
|---|
| 924 | a -= step; | 
|---|
| 925 | b += step; | 
|---|
| 926 |  | 
|---|
| 927 | y = a*fLoGainSignal[klo] | 
|---|
| 928 | + b*fLoGainSignal[khi] | 
|---|
| 929 | + (a*a*a-a)*fLoGainSecondDeriv[klo] | 
|---|
| 930 | + (b*b*b-b)*fLoGainSecondDeriv[khi]; | 
|---|
| 931 |  | 
|---|
| 932 | if (y > fAbMax) | 
|---|
| 933 | { | 
|---|
| 934 | fAbMax    = y; | 
|---|
| 935 | fAbMaxPos = x; | 
|---|
| 936 | } | 
|---|
| 937 | } | 
|---|
| 938 |  | 
|---|
| 939 | // | 
|---|
| 940 | // Second, try from time down to time-0.2 in steps of 0.025. | 
|---|
| 941 | // | 
|---|
| 942 | x     = maxpossave; | 
|---|
| 943 |  | 
|---|
| 944 | // | 
|---|
| 945 | // Test the possibility that the absolute maximum has not been found between | 
|---|
| 946 | // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos | 
|---|
| 947 | // which requires new setting of klocont and khicont | 
|---|
| 948 | // | 
|---|
| 949 | if (x < lower + fResolution) | 
|---|
| 950 | { | 
|---|
| 951 | klo--; | 
|---|
| 952 | khi--; | 
|---|
| 953 | upper -= 1.; | 
|---|
| 954 | lower -= 1.; | 
|---|
| 955 | } | 
|---|
| 956 |  | 
|---|
| 957 | a     = upper - x; | 
|---|
| 958 | b     = x - lower; | 
|---|
| 959 |  | 
|---|
| 960 | while (x>lo) | 
|---|
| 961 | { | 
|---|
| 962 |  | 
|---|
| 963 | x -= step; | 
|---|
| 964 | a += step; | 
|---|
| 965 | b -= step; | 
|---|
| 966 |  | 
|---|
| 967 | y = a*fLoGainSignal[klo] | 
|---|
| 968 | + b*fLoGainSignal[khi] | 
|---|
| 969 | + (a*a*a-a)*fLoGainSecondDeriv[klo] | 
|---|
| 970 | + (b*b*b-b)*fLoGainSecondDeriv[khi]; | 
|---|
| 971 |  | 
|---|
| 972 | if (y > fAbMax) | 
|---|
| 973 | { | 
|---|
| 974 | fAbMax    = y; | 
|---|
| 975 | fAbMaxPos = x; | 
|---|
| 976 | } | 
|---|
| 977 | } | 
|---|
| 978 |  | 
|---|
| 979 | if (fExtractionType == kAmplitude) | 
|---|
| 980 | { | 
|---|
| 981 | time = fAbMaxPos + (Int_t)fLoGainFirst; | 
|---|
| 982 | sum  = fAbMax; | 
|---|
| 983 | return; | 
|---|
| 984 | } | 
|---|
| 985 |  | 
|---|
| 986 | fHalfMax = fAbMax/2.; | 
|---|
| 987 |  | 
|---|
| 988 | // | 
|---|
| 989 | // Now, loop from the maximum bin leftward down in order to find the position of the half maximum. | 
|---|
| 990 | // First, find the right FADC slice: | 
|---|
| 991 | // | 
|---|
| 992 | klo  = maxpos; | 
|---|
| 993 | while (klo > 0) | 
|---|
| 994 | { | 
|---|
| 995 | klo--; | 
|---|
| 996 | if (fLoGainSignal[klo] < fHalfMax) | 
|---|
| 997 | break; | 
|---|
| 998 | } | 
|---|
| 999 |  | 
|---|
| 1000 | khi = klo+1; | 
|---|
| 1001 | // | 
|---|
| 1002 | // Loop from the beginning of the slice upwards to reach the fHalfMax: | 
|---|
| 1003 | // With means of bisection: | 
|---|
| 1004 | // | 
|---|
| 1005 | x     = (Float_t)klo; | 
|---|
| 1006 | a     = 1.; | 
|---|
| 1007 | b     = 0.; | 
|---|
| 1008 |  | 
|---|
| 1009 | step = 0.5; | 
|---|
| 1010 | Bool_t back = kFALSE; | 
|---|
| 1011 |  | 
|---|
| 1012 | Int_t maxcnt = 20; | 
|---|
| 1013 | Int_t cnt    = 0; | 
|---|
| 1014 |  | 
|---|
| 1015 | while (TMath::Abs(y-fHalfMax) > fResolution) | 
|---|
| 1016 | { | 
|---|
| 1017 |  | 
|---|
| 1018 | if (back) | 
|---|
| 1019 | { | 
|---|
| 1020 | x -= step; | 
|---|
| 1021 | a += step; | 
|---|
| 1022 | b -= step; | 
|---|
| 1023 | } | 
|---|
| 1024 | else | 
|---|
| 1025 | { | 
|---|
| 1026 | x += step; | 
|---|
| 1027 | a -= step; | 
|---|
| 1028 | b += step; | 
|---|
| 1029 | } | 
|---|
| 1030 |  | 
|---|
| 1031 | y = a*fLoGainSignal[klo] | 
|---|
| 1032 | + b*fLoGainSignal[khi] | 
|---|
| 1033 | + (a*a*a-a)*fLoGainSecondDeriv[klo] | 
|---|
| 1034 | + (b*b*b-b)*fLoGainSecondDeriv[khi]; | 
|---|
| 1035 |  | 
|---|
| 1036 | back = y > fHalfMax; | 
|---|
| 1037 |  | 
|---|
| 1038 | if (++cnt > maxcnt) | 
|---|
| 1039 | break; | 
|---|
| 1040 |  | 
|---|
| 1041 | step /= 2.; | 
|---|
| 1042 | } | 
|---|
| 1043 |  | 
|---|
| 1044 | // | 
|---|
| 1045 | // Now integrate the whole thing! | 
|---|
| 1046 | // | 
|---|
| 1047 | time = x + (Int_t)fLoGainFirst; | 
|---|
| 1048 | sum  = CalcIntegralLoGain(fAbMaxPos - fRiseTimeLoGain, range); | 
|---|
| 1049 | } | 
|---|
| 1050 |  | 
|---|
| 1051 | Float_t MExtractTimeAndChargeSpline::CalcIntegralHiGain(Float_t start, Float_t range) const | 
|---|
| 1052 | { | 
|---|
| 1053 | // The number of steps is calculated directly from the integration | 
|---|
| 1054 | // window. This is the only way to ensure we are not dealing with | 
|---|
| 1055 | // numerical rounding uncertanties, because we always get the same | 
|---|
| 1056 | // value under the same conditions -- it might still be different on | 
|---|
| 1057 | // other machines! | 
|---|
| 1058 | const Float_t step  = 0.2; | 
|---|
| 1059 | const Float_t width = fRiseTimeHiGain+fFallTimeHiGain; | 
|---|
| 1060 | const Float_t max   = range-1 - (width+step); | 
|---|
| 1061 | const Int_t   num   = TMath::Nint(width/step); | 
|---|
| 1062 |  | 
|---|
| 1063 | // The order is important. In some cases (limlo-/limup-check) it can | 
|---|
| 1064 | // happen than max<0. In this case we start at 0 | 
|---|
| 1065 | if (start > max) | 
|---|
| 1066 | start = max; | 
|---|
| 1067 | if (start < 0) | 
|---|
| 1068 | start = 0; | 
|---|
| 1069 |  | 
|---|
| 1070 | start += step/2; | 
|---|
| 1071 |  | 
|---|
| 1072 | Double_t sum = 0.; | 
|---|
| 1073 | for (Int_t i=0; i<num; i++) | 
|---|
| 1074 | { | 
|---|
| 1075 | const Float_t x = start+i*step; | 
|---|
| 1076 | const Int_t klo = (Int_t)TMath::Floor(x); | 
|---|
| 1077 | const Int_t khi = klo + 1; | 
|---|
| 1078 | // Note: if x is close to one integer number (= a FADC sample) | 
|---|
| 1079 | // we get the same result by using that sample as klo, and the | 
|---|
| 1080 | // next one as khi, or using the sample as khi and the previous | 
|---|
| 1081 | // one as klo (the spline is of course continuous). So we do not | 
|---|
| 1082 | // expect problems from rounding issues in the argument of | 
|---|
| 1083 | // Floor() above (we have noticed differences in roundings | 
|---|
| 1084 | // depending on the compilation options). | 
|---|
| 1085 |  | 
|---|
| 1086 | const Float_t a = khi - x; // Distance from x to next FADC sample | 
|---|
| 1087 | const Float_t b = x - klo; // Distance from x to previous FADC sample | 
|---|
| 1088 |  | 
|---|
| 1089 | sum += a*fHiGainSignal[klo] | 
|---|
| 1090 | +  b*fHiGainSignal[khi] | 
|---|
| 1091 | + (a*a*a-a)*fHiGainSecondDeriv[klo] | 
|---|
| 1092 | + (b*b*b-b)*fHiGainSecondDeriv[khi]; | 
|---|
| 1093 |  | 
|---|
| 1094 | // FIXME? Perhaps the integral should be done analitically | 
|---|
| 1095 | // between every two FADC slices, instead of numerically | 
|---|
| 1096 | } | 
|---|
| 1097 |  | 
|---|
| 1098 | sum *= step; // Transform sum in integral | 
|---|
| 1099 | return sum; | 
|---|
| 1100 | } | 
|---|
| 1101 |  | 
|---|
| 1102 | Float_t MExtractTimeAndChargeSpline::CalcIntegralLoGain(Float_t start, Float_t range) const | 
|---|
| 1103 | { | 
|---|
| 1104 | // The number of steps is calculated directly from the integration | 
|---|
| 1105 | // window. This is the only way to ensure we are not dealing with | 
|---|
| 1106 | // numerical rounding uncertanties, because we always get the same | 
|---|
| 1107 | // value under the same conditions -- it might still be different on | 
|---|
| 1108 | // other machines! | 
|---|
| 1109 | const Float_t step  = 0.2; | 
|---|
| 1110 | const Float_t width = fRiseTimeLoGain+fFallTimeLoGain; | 
|---|
| 1111 | const Float_t max   = range-1 - (width+step); | 
|---|
| 1112 | const Int_t   num   = TMath::Nint(width/step); | 
|---|
| 1113 |  | 
|---|
| 1114 | // The order is important. In some cases (limlo-/limup-check) it can | 
|---|
| 1115 | // happen that max<0. In this case we start at 0 | 
|---|
| 1116 | if (start > max) | 
|---|
| 1117 | start = max; | 
|---|
| 1118 | if (start < 0) | 
|---|
| 1119 | start = 0; | 
|---|
| 1120 |  | 
|---|
| 1121 | start += step/2; | 
|---|
| 1122 |  | 
|---|
| 1123 | Double_t sum = 0.; | 
|---|
| 1124 | for (Int_t i=0; i<num; i++) | 
|---|
| 1125 | { | 
|---|
| 1126 | const Float_t x = start+i*step; | 
|---|
| 1127 | const Int_t klo = (Int_t)TMath::Floor(x); | 
|---|
| 1128 | const Int_t khi = klo + 1; | 
|---|
| 1129 | // Note: if x is close to one integer number (= a FADC sample) | 
|---|
| 1130 | // we get the same result by using that sample as klo, and the | 
|---|
| 1131 | // next one as khi, or using the sample as khi and the previous | 
|---|
| 1132 | // one as klo (the spline is of course continuous). So we do not | 
|---|
| 1133 | // expect problems from rounding issues in the argument of | 
|---|
| 1134 | // Floor() above (we have noticed differences in roundings | 
|---|
| 1135 | // depending on the compilation options). | 
|---|
| 1136 |  | 
|---|
| 1137 | const Float_t a = khi - x; // Distance from x to next FADC sample | 
|---|
| 1138 | const Float_t b = x - klo; // Distance from x to previous FADC sample | 
|---|
| 1139 |  | 
|---|
| 1140 | sum += a*fLoGainSignal[klo] | 
|---|
| 1141 | +  b*fLoGainSignal[khi] | 
|---|
| 1142 | + (a*a*a-a)*fLoGainSecondDeriv[klo] | 
|---|
| 1143 | + (b*b*b-b)*fLoGainSecondDeriv[khi]; | 
|---|
| 1144 |  | 
|---|
| 1145 | // FIXME? Perhaps the integral should be done analitically | 
|---|
| 1146 | // between every two FADC slices, instead of numerically | 
|---|
| 1147 | } | 
|---|
| 1148 | sum *= step; // Transform sum in integral | 
|---|
| 1149 | return sum; | 
|---|
| 1150 | } | 
|---|
| 1151 |  | 
|---|
| 1152 | // -------------------------------------------------------------------------- | 
|---|
| 1153 | // | 
|---|
| 1154 | // In addition to the resources of the base-class MExtractor: | 
|---|
| 1155 | //   Resolution | 
|---|
| 1156 | //   RiseTimeHiGain | 
|---|
| 1157 | //   FallTimeHiGain | 
|---|
| 1158 | //   LoGainStretch | 
|---|
| 1159 | //   ExtractionType: amplitude, integral | 
|---|
| 1160 | // | 
|---|
| 1161 | Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print) | 
|---|
| 1162 | { | 
|---|
| 1163 |  | 
|---|
| 1164 | Bool_t rc = kFALSE; | 
|---|
| 1165 |  | 
|---|
| 1166 | if (IsEnvDefined(env, prefix, "Resolution", print)) | 
|---|
| 1167 | { | 
|---|
| 1168 | SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution)); | 
|---|
| 1169 | rc  = kTRUE; | 
|---|
| 1170 | } | 
|---|
| 1171 | if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print)) | 
|---|
| 1172 | { | 
|---|
| 1173 | SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain)); | 
|---|
| 1174 | rc = kTRUE; | 
|---|
| 1175 | } | 
|---|
| 1176 | if (IsEnvDefined(env, prefix, "FallTimeHiGain", print)) | 
|---|
| 1177 | { | 
|---|
| 1178 | SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain)); | 
|---|
| 1179 | rc = kTRUE; | 
|---|
| 1180 | } | 
|---|
| 1181 | if (IsEnvDefined(env, prefix, "LoGainStretch", print)) | 
|---|
| 1182 | { | 
|---|
| 1183 | SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch)); | 
|---|
| 1184 | rc = kTRUE; | 
|---|
| 1185 | } | 
|---|
| 1186 |  | 
|---|
| 1187 | if (IsEnvDefined(env, prefix, "ExtractionType", print)) | 
|---|
| 1188 | { | 
|---|
| 1189 | TString type = GetEnvValue(env, prefix, "ExtractionType", ""); | 
|---|
| 1190 | type.ToLower(); | 
|---|
| 1191 | type = type.Strip(TString::kBoth); | 
|---|
| 1192 | if (type==(TString)"amplitude") | 
|---|
| 1193 | SetChargeType(kAmplitude); | 
|---|
| 1194 | if (type==(TString)"integral") | 
|---|
| 1195 | SetChargeType(kIntegral); | 
|---|
| 1196 | rc=kTRUE; | 
|---|
| 1197 | } | 
|---|
| 1198 |  | 
|---|
| 1199 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc; | 
|---|
| 1200 |  | 
|---|
| 1201 | } | 
|---|
| 1202 |  | 
|---|
| 1203 |  | 
|---|