1 | #include <stdio.h>
|
---|
2 | #include <math.h>
|
---|
3 | #include "diag.h"
|
---|
4 | #include "init.h"
|
---|
5 | #include "lagrange.h"
|
---|
6 | /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
|
---|
7 |
|
---|
8 | /* random numbers */
|
---|
9 | #define RandomNumber ranf()
|
---|
10 |
|
---|
11 | /* Speed of Light in vacuum, in m/s */
|
---|
12 | #define Speed_of_Light_vacuum 299792458.0f
|
---|
13 | #define Speed_of_Light_air (Speed_of_Light_vacuum / 1.000293f)
|
---|
14 |
|
---|
15 | /* Speed of Light in vacuum, in cm/ns */
|
---|
16 | #define Speed_of_Light_vacuum_cmns (Speed_of_Light_vacuum / 1.0e7f)
|
---|
17 | #define Speed_of_Light_air_cmns (Speed_of_Light_air / 1.0e7f)
|
---|
18 |
|
---|
19 | /* Macros */
|
---|
20 | #define SQR(A) ((A)*(A))
|
---|
21 | #define NORM(A) ((float) sqrt((SQR(A[0]))+(SQR(A[1]))+(SQR(A[2]))))
|
---|
22 |
|
---|
23 | /* Function declarations */
|
---|
24 | extern float ranf(void);
|
---|
25 | void rnormal(double *r, int n);
|
---|
26 |
|
---|
27 | /* Static definitions */
|
---|
28 | float OmegaCT[3][3];
|
---|
29 | float OmegaICT[3][3];
|
---|
30 | float Omega[3][3];
|
---|
31 | float OmegaI[3][3];
|
---|
32 |
|
---|
33 | static double NormalRandomNumbers[500];
|
---|
34 | /*
|
---|
35 | From photons on ground, i.e. observation level,
|
---|
36 | to photons on focal plane, i.e. chamber !
|
---|
37 |
|
---|
38 | Mirror reflectivity
|
---|
39 | Mirror reflection
|
---|
40 | Photon position on chamber
|
---|
41 | Position smearing
|
---|
42 | Timing
|
---|
43 |
|
---|
44 | Returned values:
|
---|
45 |
|
---|
46 | 0 OK photon reached the chamber
|
---|
47 |
|
---|
48 | 1 Photon lost due to mirror reflectivity
|
---|
49 | 2 Photon lost because out of mirror
|
---|
50 | 3 Photon lost due to black spot
|
---|
51 | 4 Photon lost because reflected out of chamber
|
---|
52 |
|
---|
53 | */
|
---|
54 |
|
---|
55 | int ph2cph(photon *ph, cphoton *cph)
|
---|
56 | {
|
---|
57 |
|
---|
58 | float u, v, w; /* photon director cosines */
|
---|
59 |
|
---|
60 | float r[3]; /* photon trajectory */
|
---|
61 | float x[3]; /* position of the photon on ground */
|
---|
62 |
|
---|
63 | float rCT[3]; /* photon trajectory in the system of the CT */
|
---|
64 | float xCT[3]; /* photon position on ground (CT) */
|
---|
65 | float rm[3]; /* photon trajectory in the system of a mirror */
|
---|
66 | float xmm[3]; /* intermediate values */
|
---|
67 | float xm[3]; /* photon position on ground */
|
---|
68 | float xcut[3]; /* location of the cut sphere-trajectory */
|
---|
69 | float xcutCT[3]; /* location of the cut sphere-trajectory (CT) */
|
---|
70 |
|
---|
71 | float rnor[3], rnorm; /* normal in that point */
|
---|
72 |
|
---|
73 | float rrefl[3]; /* reflected vector, from the mirror */
|
---|
74 | float rreflCT[3]; /* reflected vector, from the CT */
|
---|
75 | float xcam[3]; /* where the photon hits the camera plane */
|
---|
76 |
|
---|
77 | float calpha; /* cos(alpha=angle incident/normal) */
|
---|
78 | float phi; /* angle between photon and camera plane */
|
---|
79 |
|
---|
80 | float a, b, c, t; /* intermediate variables */
|
---|
81 |
|
---|
82 | float d; /* minimum distance trajectory-mirror center */
|
---|
83 |
|
---|
84 | float wl; /* photon wavelength */
|
---|
85 | float reflec; /* reflectivity for a photon */
|
---|
86 |
|
---|
87 | float h; /* photon production height */
|
---|
88 |
|
---|
89 | int i, k; /* simple counters */
|
---|
90 | int i_mirror=-1; /* number of a given mirror */
|
---|
91 |
|
---|
92 |
|
---|
93 | float distmirr, distmirr2; /* distances used in MAGIC reflection routine */
|
---|
94 | float sx, sy;
|
---|
95 | float t1, t2;
|
---|
96 |
|
---|
97 | void makeOmega(float theta, float phi);
|
---|
98 | void makeOmegaI(float theta, float phi);
|
---|
99 | void applyMxV(float M[3][3], float *V, float *Vp);
|
---|
100 | float Lin2Curv(float x);
|
---|
101 |
|
---|
102 | /* begin code */
|
---|
103 |
|
---|
104 | /* get photon wawelength */
|
---|
105 |
|
---|
106 | wl = ph->w;
|
---|
107 |
|
---|
108 | /* get position on ground */
|
---|
109 |
|
---|
110 | x[0] = ph->x;
|
---|
111 | x[1] = ph->y;
|
---|
112 | x[2] = 0.0; /* ground => obs. level => z=0 */
|
---|
113 |
|
---|
114 | /* get director cosines x,y on ground */
|
---|
115 |
|
---|
116 | r[0] = ph->u;
|
---|
117 | r[1] = ph->v;
|
---|
118 | r[2] = (float) sqrt(1.0 - r[0]*r[0] - r[1]*r[1]);
|
---|
119 |
|
---|
120 | /* get photon time and production height */
|
---|
121 |
|
---|
122 | h = ph->h;
|
---|
123 |
|
---|
124 | /*!@'
|
---|
125 |
|
---|
126 | @#### Reflectivity of the mirrors.
|
---|
127 |
|
---|
128 | We make a 3rd. order interpolation using Lagrange
|
---|
129 | polynomials, in order to calculate the reflectivity of the
|
---|
130 | mirror for that wavelength. Further developments will
|
---|
131 | include also a incidence-angle dependence (which is not very
|
---|
132 | important).
|
---|
133 |
|
---|
134 | */
|
---|
135 |
|
---|
136 | /* ++
|
---|
137 | FILTER: REFLECTIVITY R(lambda)
|
---|
138 | -- */
|
---|
139 |
|
---|
140 | /* find data point to be used in Lagrange interpolation (-> k) */
|
---|
141 |
|
---|
142 | FindLagrange(Reflectivity,k,wl,nReflectivity);
|
---|
143 |
|
---|
144 | /* if random > reflectivity then goes to the TOP of the loop again */
|
---|
145 |
|
---|
146 | reflec = Lagrange(Reflectivity,k,wl);
|
---|
147 |
|
---|
148 | if ( RandomNumber > reflec ) return 1;
|
---|
149 |
|
---|
150 |
|
---|
151 | /*!@'
|
---|
152 |
|
---|
153 | @#### Reflection on mirrors.
|
---|
154 | We calculate reflected photon direction
|
---|
155 |
|
---|
156 | */
|
---|
157 |
|
---|
158 | /* ++
|
---|
159 | REFLECTION
|
---|
160 | -- */
|
---|
161 |
|
---|
162 | Debug("@1 %f %f %f %f %f %f\n", x[0], x[1], x[2], r[0], r[1], r[2]);
|
---|
163 |
|
---|
164 | /* change to the system of the CT */
|
---|
165 |
|
---|
166 | applyMxV( OmegaCT, x, xCT );
|
---|
167 | applyMxV( OmegaCT, r, rCT );
|
---|
168 |
|
---|
169 | /*
|
---|
170 | before moving to the system of the mirror
|
---|
171 | we look whether the photon hits a mirror or not
|
---|
172 |
|
---|
173 | calculate the intersection of the trajectory of the photon
|
---|
174 | with the GLOBAL DISH !!!
|
---|
175 | we reproduce the calculation of the coefficients of the
|
---|
176 | second order polynomial in z (=xCT[2]), made with
|
---|
177 | Mathematica
|
---|
178 | */
|
---|
179 |
|
---|
180 | /*
|
---|
181 | * In[1]:= parab:=z-(x^2+y^2)/(4F)
|
---|
182 | * par1=parab /. {x->x0+u/w(z-z0),y->y0+v/w(z-z0)}
|
---|
183 | *
|
---|
184 | * Out[1]=
|
---|
185 | * u (z - z0) 2 v (z - z0) 2
|
---|
186 | * (x0 + ----------) + (y0 + ----------)
|
---|
187 | * w w
|
---|
188 | * z - ---------------------------------------
|
---|
189 | * 4 F
|
---|
190 | *
|
---|
191 | * In[2]:= CoefficientList[ExpandAll[par1*4F*w^2],z]
|
---|
192 | *
|
---|
193 | * Out[2]=
|
---|
194 | * 2 2 2 2
|
---|
195 | * {-(w x0 ) - w y0 + 2 u w x0 z0 +
|
---|
196 | *
|
---|
197 | * 2 2 2 2
|
---|
198 | * 2 v w y0 z0 - u z0 - v z0 ,
|
---|
199 | *
|
---|
200 | * 2 2
|
---|
201 | * 4 F w - 2 u w x0 - 2 v w y0 + 2 u z0 +
|
---|
202 | *
|
---|
203 | * 2 2 2
|
---|
204 | * 2 v z0, -u - v }
|
---|
205 | */
|
---|
206 |
|
---|
207 | /* the z coordinate is calculated */
|
---|
208 |
|
---|
209 | a = - SQR(rCT[0]) - SQR(rCT[1]);
|
---|
210 |
|
---|
211 | b = (float) (4.0*ct_Focal_mean*SQR(rCT[2])
|
---|
212 | - 2.0*rCT[0]*rCT[2]*xCT[0] - 2.0*rCT[1]*rCT[2]*xCT[1]
|
---|
213 | + 2.0*SQR(rCT[0])*xCT[2] + 2.0*SQR(rCT[1])*xCT[2]);
|
---|
214 |
|
---|
215 | c = 2*rCT[0]*rCT[2]*x[0]*x[2] + 2*rCT[1]*rCT[2]*x[1]*x[2]
|
---|
216 | - SQR(rCT[2])*SQR(x[0]) - SQR(rCT[2])*SQR(x[1])
|
---|
217 | - SQR(rCT[0])*SQR(x[2]) - SQR(rCT[1])*SQR(x[2]);
|
---|
218 |
|
---|
219 | if ( fabs(a) < 1.e-6 ) {
|
---|
220 |
|
---|
221 | /* only one value */
|
---|
222 |
|
---|
223 | xcut[2] = -c / b;
|
---|
224 |
|
---|
225 | } else {
|
---|
226 |
|
---|
227 | d = (float) sqrt( b*b - 4.0*a*c );
|
---|
228 |
|
---|
229 | /* two possible values for z */
|
---|
230 |
|
---|
231 | t1 = (float) ((-b+d) / (2.0*a));
|
---|
232 | t2 = (float) ((-b-d) / (2.0*a));
|
---|
233 |
|
---|
234 | /* z must be the minimum of t1 and t2 */
|
---|
235 |
|
---|
236 | xcut[2] = (t1 < t2) ? t1 : t2;
|
---|
237 |
|
---|
238 | }
|
---|
239 |
|
---|
240 | /*
|
---|
241 | xcut[] is NOW the cut between the GLOBAL dish of MAGIC and
|
---|
242 | the trajectory of the photon
|
---|
243 | */
|
---|
244 |
|
---|
245 | xcut[0] = xCT[0] + rCT[0]/rCT[2]*(xcut[2]-xCT[2]);
|
---|
246 | xcut[1] = xCT[1] + rCT[1]/rCT[2]*(xcut[2]-xCT[2]);
|
---|
247 |
|
---|
248 | /* convert to Curvilinear distance over the parabolic dish */
|
---|
249 |
|
---|
250 | sx = Lin2Curv( xcut[0] );
|
---|
251 | sy = Lin2Curv( xcut[1] );
|
---|
252 |
|
---|
253 | /* is it outside the dish? */
|
---|
254 |
|
---|
255 | if ((fabs(sx) > 850.0) || (fabs(sy) > 850.0)) {
|
---|
256 | /*
|
---|
257 | cout << "CONDITION 1 !" << endl << flush;
|
---|
258 | cout << '1';
|
---|
259 | */
|
---|
260 | return 2;
|
---|
261 | }
|
---|
262 |
|
---|
263 | /* calculate the mirror to be used */
|
---|
264 |
|
---|
265 | distmirr = 1000000.0f;
|
---|
266 |
|
---|
267 | for (i=0; i<ct_NMirrors && distmirr>=ct_RMirror; ++i) {
|
---|
268 | distmirr2 = (float) sqrt(SQR(ct_data[i].x - xcut[0]) +
|
---|
269 | SQR(ct_data[i].y - xcut[1]) +
|
---|
270 | SQR(ct_data[i].z - xcut[2]));
|
---|
271 | if (distmirr2 < distmirr) {
|
---|
272 | i_mirror = i;
|
---|
273 | distmirr = distmirr2;
|
---|
274 | }
|
---|
275 | }
|
---|
276 |
|
---|
277 | /*
|
---|
278 | the mirror to use is i_mirror (calculated several lines above)
|
---|
279 | check whether the photon is outside the nearest (this) mirror
|
---|
280 | */
|
---|
281 |
|
---|
282 | if ((fabs(ct_data[i_mirror].sx - sx) > ct_RMirror) ||
|
---|
283 | (fabs(ct_data[i_mirror].sy - sy) > ct_RMirror)) {
|
---|
284 | /*
|
---|
285 | cout << "CONDITION 2 !" << endl << flush;
|
---|
286 | cout << '2';
|
---|
287 | */
|
---|
288 | return 2;
|
---|
289 | }
|
---|
290 |
|
---|
291 | /* calculate matrices for the mirror */
|
---|
292 |
|
---|
293 | makeOmega (-ct_data[i_mirror].theta,
|
---|
294 | ct_data[i_mirror].phi);
|
---|
295 | makeOmegaI(-ct_data[i_mirror].theta,
|
---|
296 | ct_data[i_mirror].phi);
|
---|
297 |
|
---|
298 | /* change to the system of the mirror */
|
---|
299 |
|
---|
300 | /* first translation... */
|
---|
301 |
|
---|
302 | xmm[0] = xCT[0] - ct_data[i_mirror].x;
|
---|
303 | xmm[1] = xCT[1] - ct_data[i_mirror].y;
|
---|
304 | xmm[2] = xCT[2] - ct_data[i_mirror].z;
|
---|
305 |
|
---|
306 | /* ...then rotation */
|
---|
307 |
|
---|
308 | applyMxV( Omega, xmm, xm );
|
---|
309 | applyMxV( Omega, rCT, rm );
|
---|
310 |
|
---|
311 | /*
|
---|
312 | the vector rCT should be normalized, and
|
---|
313 | so the vector rm remains normalized as well, but, anyhow...
|
---|
314 | */
|
---|
315 |
|
---|
316 | rnorm = NORM( rm );
|
---|
317 | rm[0] /= rnorm;
|
---|
318 | rm[1] /= rnorm;
|
---|
319 | rm[2] /= rnorm;
|
---|
320 |
|
---|
321 | /*
|
---|
322 | calculate the intersection of the trajectory of the photon
|
---|
323 | with the mirror
|
---|
324 | we reproduce the calculation of the coefficients of the
|
---|
325 | second order polynomial in z (=xm[2]), made with
|
---|
326 | Mathematica
|
---|
327 | */
|
---|
328 |
|
---|
329 | /*
|
---|
330 | * In[1]:= esfera:=x^2+y^2+(z-R)^2-R^2;
|
---|
331 | * recta:={x->x0+u/w(z-z0),y->y0+v/w(z-z0)}
|
---|
332 | *
|
---|
333 | * In[2]:= esfera
|
---|
334 | *
|
---|
335 | * 2 2 2 2
|
---|
336 | * Out[2]= -R + x + y + (-R + z)
|
---|
337 | *
|
---|
338 | * In[3]:= recta
|
---|
339 | *
|
---|
340 | * u (z - z0) v (z - z0)
|
---|
341 | * Out[3]= {x -> x0 + ----------, y -> y0 + ----------}
|
---|
342 | * w w
|
---|
343 | *
|
---|
344 | * In[4]:= esf=esfera /. recta
|
---|
345 | *
|
---|
346 | * 2 2 u (z - z0) 2 v (z - z0) 2
|
---|
347 | * Out[4]= -R + (-R + z) + (x0 + ----------) + (y0 + ----------)
|
---|
348 | * w w
|
---|
349 | *
|
---|
350 | * In[5]:= coefs=CoefficientList[ExpandAll[esf],z]
|
---|
351 | *
|
---|
352 | * 2 2 2 2
|
---|
353 | * 2 2 2 u x0 z0 2 v y0 z0 u z0 v z0
|
---|
354 | * Out[5]= {x0 + y0 - --------- - --------- + ------ + ------,
|
---|
355 | * w w 2 2
|
---|
356 | * w w
|
---|
357 | *
|
---|
358 | * 2 2 2 2
|
---|
359 | * 2 u x0 2 v y0 2 u z0 2 v z0 u v
|
---|
360 | * > -2 R + ------ + ------ - ------- - -------, 1 + -- + --}
|
---|
361 | * w w 2 2 2 2
|
---|
362 | * w w w w
|
---|
363 | * In[6]:= Simplify[ExpandAll[coefs*w^2]]
|
---|
364 | *
|
---|
365 | * 2 2 2 2 2 2
|
---|
366 | * Out[6]= {w (x0 + y0 ) - 2 w (u x0 + v y0) z0 + (u + v ) z0 ,
|
---|
367 | *
|
---|
368 | * 2 2 2 2 2
|
---|
369 | * > -2 (R w - u w x0 + u z0 + v (-(w y0) + v z0)), u + v + w }
|
---|
370 | *
|
---|
371 | */
|
---|
372 |
|
---|
373 | /*
|
---|
374 | the z coordinate is calculated, using the coefficient
|
---|
375 | shown above
|
---|
376 | */
|
---|
377 |
|
---|
378 | a = SQR(rm[0]) + SQR(rm[1]) + SQR(rm[2]);
|
---|
379 |
|
---|
380 | b = (float) (-2*(2.*ct_data[i_mirror].f*SQR(rm[2])
|
---|
381 | - rm[0]*rm[2]*xm[0]
|
---|
382 | + SQR(rm[0])*xm[2]
|
---|
383 | + rm[1]*(-(rm[2]*xm[1]) + rm[1]*xm[2])));
|
---|
384 |
|
---|
385 | c = (SQR(rm[2])*(SQR(xm[0]) + SQR(xm[1]))
|
---|
386 | - 2*rm[2]*(rm[0]*xm[0] + rm[1]*xm[1])*xm[2]
|
---|
387 | + (SQR(rm[0]) + SQR(rm[1]))*SQR(xm[2]));
|
---|
388 |
|
---|
389 | d = (float) sqrt( b*b - 4.0*a*c );
|
---|
390 |
|
---|
391 | /* two possible values for z */
|
---|
392 |
|
---|
393 | t1 = (float) ((-b+d) / (2.0*a));
|
---|
394 | t2 = (float) ((-b-d) / (2.0*a));
|
---|
395 |
|
---|
396 | /* z must be the minimum of t1 and t2 */
|
---|
397 |
|
---|
398 | xcut[2] = (t1 < t2) ? t1 : t2;
|
---|
399 | xcut[0] = xm[0] + rm[0]/rm[2]*(xcut[2]-xm[2]);
|
---|
400 | xcut[1] = xm[1] + rm[1]/rm[2]*(xcut[2]-xm[2]);
|
---|
401 |
|
---|
402 | /*
|
---|
403 | ++
|
---|
404 | BLACK SPOTS: If the photon hits the black spot, it's lost
|
---|
405 | --
|
---|
406 | */
|
---|
407 |
|
---|
408 | if ( sqrt(SQR(xcut[0]) + SQR(xcut[1])) < ct_BlackSpot_rad ) {
|
---|
409 | /*
|
---|
410 | cout << "CONDITION 3!\n" << flush;
|
---|
411 | cout << '3';
|
---|
412 | */
|
---|
413 | return 3;
|
---|
414 | }
|
---|
415 |
|
---|
416 | /*
|
---|
417 | if we still have the photon, we continue with the reflexion;
|
---|
418 | we calculate normal vector in this point
|
---|
419 | (and normalize, with the sign changed)
|
---|
420 | */
|
---|
421 |
|
---|
422 | rnor[0] = 2.0f*xcut[0];
|
---|
423 | rnor[1] = 2.0f*xcut[1];
|
---|
424 | rnor[2] = (float) (2.0*(xcut[2] - 2.0*ct_Focal[i_mirror]));
|
---|
425 |
|
---|
426 | rnorm = -NORM( rnor );
|
---|
427 | rnor[0] /= rnorm;
|
---|
428 | rnor[1] /= rnorm;
|
---|
429 | rnor[2] /= rnorm;
|
---|
430 |
|
---|
431 | /*
|
---|
432 | now, both "normal" vector and original trajectory are
|
---|
433 | normalized
|
---|
434 | just project the original vector in the normal, and
|
---|
435 | take it as the "mean" position of the original and
|
---|
436 | the "reflected" vector
|
---|
437 | from this, we can calculate the "reflected" vector
|
---|
438 | calpha = cos(angle(rnor,rm))
|
---|
439 | */
|
---|
440 |
|
---|
441 | calpha = (float) fabs(rnor[0]*rm[0] + rnor[1]*rm[1] + rnor[2]*rm[2]);
|
---|
442 |
|
---|
443 | /* finally!!! we have the reflected trajectory of the photon */
|
---|
444 |
|
---|
445 | rrefl[0] = (float) (2.0*rnor[0]*calpha - rm[0]);
|
---|
446 | rrefl[1] = (float) (2.0*rnor[1]*calpha - rm[1]);
|
---|
447 | rrefl[2] = (float) (2.0*rnor[2]*calpha - rm[2]);
|
---|
448 |
|
---|
449 | rnorm = NORM( rrefl );
|
---|
450 | rrefl[0] /= rnorm;
|
---|
451 | rrefl[1] /= rnorm;
|
---|
452 | rrefl[2] /= rnorm;
|
---|
453 |
|
---|
454 | /* let's go back to the coordinate system of the CT */
|
---|
455 |
|
---|
456 | /* first rotation... */
|
---|
457 |
|
---|
458 | applyMxV( OmegaI, xcut, xcutCT);
|
---|
459 | applyMxV( OmegaI, rrefl, rreflCT);
|
---|
460 |
|
---|
461 | /* ...then translation */
|
---|
462 |
|
---|
463 | xcutCT[0] += ct_data[i_mirror].x;
|
---|
464 | xcutCT[1] += ct_data[i_mirror].y;
|
---|
465 | xcutCT[2] += ct_data[i_mirror].z;
|
---|
466 |
|
---|
467 | /*
|
---|
468 | calculate intersection of this trajectory and the camera plane
|
---|
469 | in the system of the CT, this plane is z = ct_Focal
|
---|
470 | */
|
---|
471 |
|
---|
472 | t = (ct_Focal_mean - xcutCT[2]) / rreflCT[2];
|
---|
473 |
|
---|
474 | xcam[0] = xcutCT[0] + rreflCT[0]*t;
|
---|
475 | xcam[1] = xcutCT[1] + rreflCT[1]*t;
|
---|
476 | xcam[2] = xcutCT[2] + rreflCT[2]*t;
|
---|
477 |
|
---|
478 | /*
|
---|
479 | ++
|
---|
480 | AXIS DEVIATION: We introduce it here just as a first order
|
---|
481 | correction, by modifying the position of the reflected photon.
|
---|
482 | --
|
---|
483 | */
|
---|
484 |
|
---|
485 | xcam[0] += AxisDeviation[0][i_mirror];
|
---|
486 | xcam[1] += AxisDeviation[1][i_mirror];
|
---|
487 |
|
---|
488 | /*
|
---|
489 | ++
|
---|
490 | SMEARING: We apply the point spread function for the mirrors
|
---|
491 | --
|
---|
492 | */
|
---|
493 |
|
---|
494 | /* get two N(0;1) random numbers */
|
---|
495 |
|
---|
496 | rnormal( NormalRandomNumbers, 2 );
|
---|
497 |
|
---|
498 | /* modify the Cphoton position in the camera */
|
---|
499 |
|
---|
500 | xcam[0] += (float) (NormalRandomNumbers[0] * ct_PSpread_mean);
|
---|
501 | xcam[1] += (float) (NormalRandomNumbers[1] * ct_PSpread_mean);
|
---|
502 |
|
---|
503 | /* check whether the photon goes out of the camera */
|
---|
504 |
|
---|
505 | if ( (SQR(xcam[0])+SQR(xcam[1])) > SQR(ct_CameraWidth) ) {
|
---|
506 | return 4;
|
---|
507 | }
|
---|
508 |
|
---|
509 | /*
|
---|
510 | ++
|
---|
511 | ANGLE OF INCIDENCE
|
---|
512 | --
|
---|
513 |
|
---|
514 | calculate angle of incidence between tray. and camera plane
|
---|
515 | the camera plane is
|
---|
516 | 0 y + 0 y + z - ct_Focal = 0 => (A,B,C,D) = (0,0,1,-ct_Focal)
|
---|
517 | from Table 3.20 "Tasch. der Math."
|
---|
518 | */
|
---|
519 |
|
---|
520 | phi = (float) asin(rreflCT[2]);
|
---|
521 |
|
---|
522 | /*
|
---|
523 | ++
|
---|
524 | TIMING
|
---|
525 | --
|
---|
526 | */
|
---|
527 |
|
---|
528 | /* calculate the new time of the photon (in the camera) */
|
---|
529 |
|
---|
530 | t = ph->t;
|
---|
531 |
|
---|
532 | /*
|
---|
533 | substract path from the mirror till the ground, 'cos
|
---|
534 | the photon actually hit the mirror!!
|
---|
535 | */
|
---|
536 |
|
---|
537 | t = (float) (t + ((( xm[2] > 0. ) ? -1.0 : +1.0) *
|
---|
538 | sqrt( SQR(xm[0] - xcut[0]) +
|
---|
539 | SQR(xm[1] - xcut[1]) +
|
---|
540 | SQR(xm[2] - xcut[2]) ) / Speed_of_Light_air_cmns));
|
---|
541 |
|
---|
542 | /* add path from the mirror till the camera */
|
---|
543 |
|
---|
544 | t = (float) (t + sqrt( SQR(xcutCT[0] - xcam[0]) +
|
---|
545 | SQR(xcutCT[1] - xcam[1]) +
|
---|
546 | SQR(xcutCT[2] - xcam[2]) ) / Speed_of_Light_air_cmns);
|
---|
547 |
|
---|
548 | /* show it */
|
---|
549 |
|
---|
550 | Debug("@2 %f %f %f %f %f %f %f %f %f\n"
|
---|
551 | "@3 %f %f %d %f %f %f %f\n"
|
---|
552 | "@4 %f %f %f %f\n",
|
---|
553 | xCT[0], xCT[1], xCT[2], rCT[0], rCT[1], rCT[2],
|
---|
554 | xcut[0], xcut[1], xcut[2],
|
---|
555 | sx, sy, i_mirror, ct_data[i_mirror].sx, ct_data[i_mirror].sy,
|
---|
556 | ct_data[i_mirror].sx - sx, ct_data[i_mirror].sy - sy,
|
---|
557 | xcam[0], xcam[1], xcam[2], phi);
|
---|
558 |
|
---|
559 | /* Output */
|
---|
560 |
|
---|
561 | /* cph->w = wl; */
|
---|
562 | cph->x = xcam[0];
|
---|
563 | cph->y = xcam[1];
|
---|
564 | cph->u = r[0];
|
---|
565 | cph->v = r[1];
|
---|
566 | cph->t = t;
|
---|
567 | cph->h = h;
|
---|
568 | cph->phi = phi;
|
---|
569 |
|
---|
570 | return 0;
|
---|
571 |
|
---|
572 | } /* end of ph2cph */
|
---|
573 |
|
---|
574 |
|
---|
575 | /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
---|
576 |
|
---|
577 | !---------------------------------------------------------------------
|
---|
578 | @name makeOmega
|
---|
579 |
|
---|
580 | @desc function to calculate the matrix Omega(theta,phi)
|
---|
581 |
|
---|
582 | @var theta Angle theta of the transformation
|
---|
583 | @var phi Angle phi of the transformation
|
---|
584 |
|
---|
585 | @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
586 | ----------------------------------------------------------------------
|
---|
587 | @function
|
---|
588 | */
|
---|
589 |
|
---|
590 | void
|
---|
591 | makeOmega (float theta, float phi)
|
---|
592 | {
|
---|
593 | static float ct, st, cp, sp;
|
---|
594 |
|
---|
595 | /* shortcuts for cosine and sine of theta and phi */
|
---|
596 | ct = (float) cos(theta);
|
---|
597 | st = (float) sin(theta);
|
---|
598 | cp = (float) cos(phi);
|
---|
599 | sp = (float) sin(phi);
|
---|
600 |
|
---|
601 | /* save values in the array (see top of file) */
|
---|
602 | Omega[0][0] = cp*ct;
|
---|
603 | Omega[0][1] = sp*ct;
|
---|
604 | Omega[0][2] = -st;
|
---|
605 |
|
---|
606 | Omega[1][0] = -sp;
|
---|
607 | Omega[1][1] = cp;
|
---|
608 | Omega[1][2] = 0;
|
---|
609 |
|
---|
610 | Omega[2][0] = cp*st;
|
---|
611 | Omega[2][1] = sp*st;
|
---|
612 | Omega[2][2] = ct;
|
---|
613 | }
|
---|
614 |
|
---|
615 |
|
---|
616 | /*
|
---|
617 | !---------------------------------------------------------------------
|
---|
618 | @name makeOmegaI
|
---|
619 |
|
---|
620 | @desc function to calculate the matrix Omega-1(theta,phi)
|
---|
621 |
|
---|
622 | @var theta Angle theta of the transformation
|
---|
623 | @var phi Angle phi of the transformation
|
---|
624 |
|
---|
625 | @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
626 | ----------------------------------------------------------------------
|
---|
627 | @function
|
---|
628 | */
|
---|
629 |
|
---|
630 | void
|
---|
631 | makeOmegaI(float theta, float phi)
|
---|
632 | {
|
---|
633 | static float ct, st, cp, sp;
|
---|
634 |
|
---|
635 | /* shortcuts for cosine and sine of theta and phi */
|
---|
636 | ct = (float) cos(theta);
|
---|
637 | st = (float) sin(theta);
|
---|
638 | cp = (float) cos(phi);
|
---|
639 | sp = (float) sin(phi);
|
---|
640 |
|
---|
641 | /* save values in the array (see top of file) */
|
---|
642 | OmegaI[0][0] = cp*ct;
|
---|
643 | OmegaI[0][1] = -sp;
|
---|
644 | OmegaI[0][2] = cp*st;
|
---|
645 |
|
---|
646 | OmegaI[1][0] = sp*ct;
|
---|
647 | OmegaI[1][1] = cp;
|
---|
648 | OmegaI[1][2] = sp*st;
|
---|
649 |
|
---|
650 | OmegaI[2][0] = -st;
|
---|
651 | OmegaI[2][1] = 0;
|
---|
652 | OmegaI[2][2] = ct;
|
---|
653 | }
|
---|
654 |
|
---|
655 |
|
---|
656 | /*
|
---|
657 | !---------------------------------------------------------------------
|
---|
658 | @name applyMxv
|
---|
659 |
|
---|
660 | @desc returns the vector v' such that v' = M x v
|
---|
661 |
|
---|
662 | @var M matrix of the transformation
|
---|
663 | @var v vector to be multiplied
|
---|
664 | @var vi resulting vector
|
---|
665 |
|
---|
666 | @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
667 | ----------------------------------------------------------------------
|
---|
668 | @function
|
---|
669 | */
|
---|
670 |
|
---|
671 | void
|
---|
672 | applyMxV(float M[3][3], float *V, float *Vp)
|
---|
673 | {
|
---|
674 | Vp[0] = (M[0][0] * V[0] +
|
---|
675 | M[0][1] * V[1] +
|
---|
676 | M[0][2] * V[2]);
|
---|
677 | Vp[1] = (M[1][0] * V[0] +
|
---|
678 | M[1][1] * V[1] +
|
---|
679 | M[1][2] * V[2]);
|
---|
680 | Vp[2] = (M[2][0] * V[0] +
|
---|
681 | M[2][1] * V[1] +
|
---|
682 | M[2][2] * V[2]);
|
---|
683 | }
|
---|
684 |
|
---|
685 | /*
|
---|
686 | !---------------------------------------------------------------------
|
---|
687 | @name Lin2Curv
|
---|
688 |
|
---|
689 | @desc Linear (Euclidean) to Curvilinear distance
|
---|
690 |
|
---|
691 | @var x Radial distance from the axis of the paraboloid
|
---|
692 |
|
---|
693 | @return Curvilinear distance over the parabolic shape
|
---|
694 |
|
---|
695 | @date Wed Jul 8 15:25:39 MET DST 1998
|
---|
696 | ----------------------------------------------------------------------
|
---|
697 | @function
|
---|
698 | */
|
---|
699 |
|
---|
700 | float
|
---|
701 | Lin2Curv(float x)
|
---|
702 | {
|
---|
703 | x /= 100.f;
|
---|
704 | return ((x + 0.000144175317185f * x * x * x)*100.f);
|
---|
705 | }
|
---|
706 |
|
---|
707 | /*!---------------------------------------------------------------------
|
---|
708 | // @name rnormal
|
---|
709 | //
|
---|
710 | // @desc returns n(=2k) normaly distributed numbers
|
---|
711 | //
|
---|
712 | // @var *r pointer to a vector where we write the numbers
|
---|
713 | // @var n how many numbers do we generate
|
---|
714 | //
|
---|
715 | // @date Sat Jun 27 05:58:56 MET DST 1998
|
---|
716 | //----------------------------------------------------------------------
|
---|
717 | // @function */
|
---|
718 |
|
---|
719 | void rnormal(double *r, int n)
|
---|
720 | {
|
---|
721 |
|
---|
722 | double z1, z2;
|
---|
723 | int i;
|
---|
724 |
|
---|
725 | for (i=0; i<n; i+=2) {
|
---|
726 |
|
---|
727 | z1 = RandomNumber;
|
---|
728 | z2 = RandomNumber;
|
---|
729 |
|
---|
730 | r[i] = sqrt(-2.0*log(z1)) * cos(2.0*M_PI*z2);
|
---|
731 | r[i+1] = sqrt(-2.0*log(z1)) * sin(2.0*M_PI*z2);
|
---|
732 |
|
---|
733 | }
|
---|
734 |
|
---|
735 | }
|
---|