1 | #include "star.hxx"
|
---|
2 |
|
---|
3 | star::star(){ // constructor (set invalid values)
|
---|
4 | icatnum = -999;
|
---|
5 | ra_h = -999.;
|
---|
6 | dec_deg = -999.;
|
---|
7 | umag = -999.;
|
---|
8 | bmag = -999.;
|
---|
9 | vmag = -999.;
|
---|
10 | rmag = -999.;
|
---|
11 | u = -999.;
|
---|
12 | v = -999.;
|
---|
13 | ra_rad = -999.;
|
---|
14 | dec_rad = -999.;
|
---|
15 | }
|
---|
16 |
|
---|
17 | int star::readstar(FILE *fp, int verbose){ // read one line of the SKY2000 V2.0
|
---|
18 | // catalog and extract the interesting
|
---|
19 | // data
|
---|
20 | int ira_hours, ira_min;
|
---|
21 | int idec_degrees, idec_arcmin;
|
---|
22 | float ra_sec, dec_arcsec;
|
---|
23 | char catline[SKY2000LINELENGTH + 1];
|
---|
24 | char *pos;
|
---|
25 | char c2[3];
|
---|
26 | char c3[4];
|
---|
27 | char c6[7];
|
---|
28 | char c7[8];
|
---|
29 | char c8[9];
|
---|
30 |
|
---|
31 | strncpy(c2+2, "\0", 1);
|
---|
32 | strncpy(c3+3, "\0", 1);
|
---|
33 | strncpy(c6+6, "\0", 1);
|
---|
34 | strncpy(c7+7, "\0", 1);
|
---|
35 | strncpy(c8+8, "\0", 1);
|
---|
36 |
|
---|
37 | pos = catline;
|
---|
38 |
|
---|
39 | if( fgets( pos , SKY2000LINELENGTH + 1, fp) == NULL ){
|
---|
40 | return(FALSE);
|
---|
41 | }
|
---|
42 |
|
---|
43 | if(verbose > 2) fprintf(stdout, "%s\n", catline);
|
---|
44 |
|
---|
45 | pos = catline + 27;
|
---|
46 |
|
---|
47 |
|
---|
48 | strncpy(c8, pos, 8);
|
---|
49 | sscanf(c8, "%d", &icatnum);
|
---|
50 |
|
---|
51 | pos = catline + 118;
|
---|
52 | strncpy(c2, pos, 2);
|
---|
53 | sscanf(c2, "%d", &ira_hours);
|
---|
54 |
|
---|
55 | pos = catline + 120;
|
---|
56 | strncpy(c2, pos, 2);
|
---|
57 | sscanf(c2, "%d", &ira_min);
|
---|
58 |
|
---|
59 | pos = catline + 122;
|
---|
60 | strncpy(c7, pos, 7);
|
---|
61 | sscanf(c7, "%f", &ra_sec);
|
---|
62 |
|
---|
63 | pos = catline + 129;
|
---|
64 | strncpy(c3, pos, 3);
|
---|
65 | if( c3[1] == ' ' ){
|
---|
66 | c3[1] = '0';
|
---|
67 | }
|
---|
68 | if( c3[2] == ' ' ){
|
---|
69 | c3[2] = '0';
|
---|
70 | }
|
---|
71 | sscanf(c3, "%d", &idec_degrees);
|
---|
72 |
|
---|
73 | pos = catline + 132;
|
---|
74 | strncpy(c2, pos, 2);
|
---|
75 | sscanf(c2, "%d", &idec_arcmin);
|
---|
76 |
|
---|
77 | pos = catline + 134;
|
---|
78 | strncpy(c6, pos, 6);
|
---|
79 | sscanf(c6, "%f", &dec_arcsec);
|
---|
80 |
|
---|
81 | pos = catline + 231;
|
---|
82 | strncpy(c6, pos, 6);
|
---|
83 | if (sscanf(c6, "%f", &vmag) < 1)
|
---|
84 | vmag = -999.;;
|
---|
85 |
|
---|
86 | pos = catline + 251;
|
---|
87 | strncpy(c6, pos, 6);
|
---|
88 | if (sscanf(c6, "%f", &bmag) < 1)
|
---|
89 | bmag = -999.;
|
---|
90 |
|
---|
91 | pos = catline + 271;
|
---|
92 | strncpy(c6, pos, 6);
|
---|
93 | if (sscanf(c6, "%f", &umag) < 1)
|
---|
94 | umag = -999.;
|
---|
95 |
|
---|
96 | ra_h = ira_hours + ira_min/60. + ra_sec/3600.;
|
---|
97 | dec_deg = idec_degrees + idec_arcmin/60. + dec_arcsec/3600.;
|
---|
98 | ra_rad = ra_h * PI / 12.;
|
---|
99 | dec_rad = dec_deg * PI /180.;
|
---|
100 |
|
---|
101 | if (verbose > 2) fprintf(stdout, "extracted: %d %d %d %f %d %d %f %f %f %f\n",
|
---|
102 | icatnum, ira_hours, ira_min, ra_sec,
|
---|
103 | idec_degrees, idec_arcmin, dec_arcsec,
|
---|
104 | umag, bmag, vmag);
|
---|
105 |
|
---|
106 | return(TRUE);
|
---|
107 | }
|
---|
108 |
|
---|
109 | int star::printstar(){ // write one star's parameters
|
---|
110 | fprintf(stdout, "%d %f %f %f %f %f %f\n",
|
---|
111 | icatnum, ra_h, dec_deg, umag, bmag, vmag, rmag);
|
---|
112 | return(0);
|
---|
113 | }
|
---|
114 |
|
---|
115 | //----------------------------------------------------------------------------
|
---|
116 | // @name calcmissingmags
|
---|
117 | //
|
---|
118 | // @desc calculate the magnitudes for those wavebands in which no data
|
---|
119 | // @desc is available assuming a black body and using the V and B mags
|
---|
120 | //
|
---|
121 | //----------------------------------------------------------------------------
|
---|
122 |
|
---|
123 | float star::calcmissingmags(int verbose) { // returns effective temperature; -1. = not possible
|
---|
124 |
|
---|
125 | float temp;
|
---|
126 | float tprime;
|
---|
127 | float nu1_Hz, nu2_Hz, bflux, vflux, rflux, xmag;
|
---|
128 |
|
---|
129 |
|
---|
130 |
|
---|
131 | if(vmag > -100.){ // valid vmag available
|
---|
132 | if(bmag < -100.){ // no valid bmag available
|
---|
133 | cout << "Warning: star no. " << icatnum <<
|
---|
134 | " has no Bmag measurement. Using Bmag = Vmag = "<<vmag<<"\n";
|
---|
135 | bmag = vmag;
|
---|
136 | }
|
---|
137 | }
|
---|
138 | else{
|
---|
139 | cout << "Warning: star no. " << icatnum <<
|
---|
140 | " has no Vmag measurement.\n";
|
---|
141 | return(-1.);
|
---|
142 | }
|
---|
143 |
|
---|
144 | // calculate the star temperature using approximation from
|
---|
145 | // Kitchin, C.R., Astrophysical Techniques, 2nd ed., equ. 3.1.24
|
---|
146 |
|
---|
147 | if((bmag-vmag) > -0.2){
|
---|
148 | temp = 8540. / ( (bmag-vmag) + 0.865 );
|
---|
149 | if (verbose > 1) cout << "Star temperature from B-V: T = " << temp << "K\n";
|
---|
150 | }
|
---|
151 | else{
|
---|
152 | temp = 12000.;
|
---|
153 | if (verbose > 1) cout << "Star temperature from B-V: T > " << temp << "K\n";
|
---|
154 | }
|
---|
155 |
|
---|
156 | // calculate an effective temperature for the Rmag calculation
|
---|
157 | // tprime = T * k / h
|
---|
158 |
|
---|
159 | nu1_Hz = LIGHTSPEED_mps/((VLMIN_nm+VLMAX_nm)/2.*1e-9);
|
---|
160 | nu2_Hz = LIGHTSPEED_mps/((BLMAX_nm+BLMAX_nm)/2.*1e-9);
|
---|
161 | vflux = pow(10.,-0.4*vmag-22.42);
|
---|
162 | bflux = pow(10.,-0.4*bmag-22.42);
|
---|
163 | tprime = (nu2_Hz - nu1_Hz) / ( log(vflux/bflux) - 3. * log(nu1_Hz/nu2_Hz) );
|
---|
164 | if (verbose > 1) cout << "Blackbody T = " << tprime/1.38e-23*6.62e-34 << "\n";
|
---|
165 |
|
---|
166 |
|
---|
167 | if( umag < -100. ){ // umag could not be read
|
---|
168 | if (verbose) cout << "Warning: star no. " << icatnum <<
|
---|
169 | " has no Umag measurement. Calculating it from its Vmag = " << vmag << "\n";
|
---|
170 | if (verbose) cout << " and Bmag = " << bmag << " assuming standard colour-colour-plot ... ";
|
---|
171 |
|
---|
172 | if((bmag-vmag) > 1.4){
|
---|
173 | umag = bmag * 0.9;
|
---|
174 | }
|
---|
175 | else{
|
---|
176 | if((bmag-vmag) > 0.5){
|
---|
177 | umag = -0.5 + 1.37 * (bmag - vmag) + bmag;
|
---|
178 | }
|
---|
179 | else{
|
---|
180 | if((bmag-vmag) <= 0.){
|
---|
181 | umag = 4.07 * (bmag - vmag) + bmag;
|
---|
182 | }
|
---|
183 | else{
|
---|
184 | umag = 0.175 * (bmag - vmag) + bmag;
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|
188 |
|
---|
189 | if (verbose) cout << " result Umag = " << umag << "\n";
|
---|
190 |
|
---|
191 | if( umag < 5.0 ){
|
---|
192 | cout << "Warning: star no. " << icatnum << " is bright (Vmag =" << vmag << ", Bmag = "
|
---|
193 | << bmag << ")\n and has no Umag measurement. Estimated Umag is "<< umag <<"\n";
|
---|
194 | }
|
---|
195 |
|
---|
196 | }
|
---|
197 | else{ // umag available
|
---|
198 | if (verbose > 1) {
|
---|
199 | cout << "Test: star no. " << icatnum <<
|
---|
200 | " has Umag = " << umag <<". Calculating it from its Vmag = " << vmag << "\n";
|
---|
201 | cout << " and Bmag = " << bmag << " assuming standard colour-colour-plot ...\n ";
|
---|
202 |
|
---|
203 | if((bmag-vmag) > 1.4){
|
---|
204 | xmag = bmag * 0.9;
|
---|
205 | }
|
---|
206 | else{
|
---|
207 | if((bmag-vmag) > 0.5){
|
---|
208 | xmag = -0.5 + 1.37 * (bmag - vmag) + bmag;
|
---|
209 | }
|
---|
210 | else{
|
---|
211 | if((bmag-vmag) <= 0.){
|
---|
212 | xmag = 4.07 * (bmag - vmag) + bmag;
|
---|
213 | }
|
---|
214 | else{
|
---|
215 | xmag = 0.175 * (bmag - vmag) + bmag;
|
---|
216 | }
|
---|
217 | }
|
---|
218 | }
|
---|
219 | if (verbose > 2)
|
---|
220 | cout << "TEST " << umag <<" "<< xmag << " " << temp << " " << bmag << " " << vmag << "\n";
|
---|
221 |
|
---|
222 | cout << " result Umag = " << xmag << "\n";
|
---|
223 | }
|
---|
224 |
|
---|
225 | }
|
---|
226 |
|
---|
227 | if( rmag < -100. ){ // rmag not present (it's not part of the catalog)
|
---|
228 |
|
---|
229 | temp = temp * 1.38e-23 / 6.62e-34; // * k / h
|
---|
230 |
|
---|
231 | rflux = vflux * pow((VLMIN_nm + VLMAX_nm)/(RLMIN_nm + RLMAX_nm),3.) *
|
---|
232 | (exp(nu1_Hz/temp) - 1.) /
|
---|
233 | (exp(LIGHTSPEED_mps/((RLMIN_nm+RLMAX_nm)/2.*1e-9)/temp) - 1.);
|
---|
234 |
|
---|
235 | rmag = (log10(rflux) + 22.42)/(-0.4);
|
---|
236 |
|
---|
237 | }
|
---|
238 |
|
---|
239 | return(tprime);
|
---|
240 | }
|
---|
241 |
|
---|
242 |
|
---|
243 | //----------------------------------------------------------------------------
|
---|
244 | // @name mag_nphot
|
---|
245 | //
|
---|
246 | // @desc translates magnitudes in number of photons, using log(flux)= -0.4*m+22.42
|
---|
247 | //
|
---|
248 | //----------------------------------------------------------------------------
|
---|
249 |
|
---|
250 | int star::mag_nphot(int np[4], float inttime_s, float radius_m, int verbose) {
|
---|
251 |
|
---|
252 | float bflux, vflux, uflux, rflux;
|
---|
253 | float bintensity, vintensity, uintensity, rintensity;
|
---|
254 | float unu1_Hz, unu2_Hz, bnu1_Hz, bnu2_Hz, vnu1_Hz, vnu2_Hz, rnu1_Hz, rnu2_Hz;
|
---|
255 |
|
---|
256 | // The flux is given in Watt/m2*Hz.
|
---|
257 |
|
---|
258 | uflux = pow(10.,-0.4*umag-22.42);
|
---|
259 | bflux = pow(10.,-0.4*bmag-22.42);
|
---|
260 | vflux = pow(10.,-0.4*vmag-22.42);
|
---|
261 | rflux = pow(10.,-0.4*rmag-22.42);
|
---|
262 |
|
---|
263 | if (verbose) cout<<"MAGS "<<umag<<" "<<bmag<<" "<<vmag<<" "<<rmag<<endl;
|
---|
264 |
|
---|
265 | unu1_Hz = LIGHTSPEED_mps/(ULMIN_nm*1e-9);
|
---|
266 | unu2_Hz = LIGHTSPEED_mps/(ULMAX_nm*1e-9);
|
---|
267 | bnu1_Hz = LIGHTSPEED_mps/(BLMIN_nm*1e-9);
|
---|
268 | bnu2_Hz = LIGHTSPEED_mps/(BLMAX_nm*1e-9);
|
---|
269 | vnu1_Hz = LIGHTSPEED_mps/(VLMIN_nm*1e-9);
|
---|
270 | vnu2_Hz = LIGHTSPEED_mps/(VLMAX_nm*1e-9);
|
---|
271 | rnu1_Hz = LIGHTSPEED_mps/(RLMIN_nm*1e-9);
|
---|
272 | rnu2_Hz = LIGHTSPEED_mps/(RLMAX_nm*1e-9);
|
---|
273 |
|
---|
274 | // The intensity is given in number_of_photons/sec*m2. We obtain this units
|
---|
275 | // because we multiply by the conversion factor 1Joule/s=h*c/((lambda1+lambda2)/2)
|
---|
276 |
|
---|
277 |
|
---|
278 | uintensity = uflux*(unu1_Hz-unu2_Hz) * (ULMIN_nm+ULMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
---|
279 | bintensity = bflux*(bnu1_Hz-bnu2_Hz) * (BLMIN_nm+BLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
---|
280 | vintensity = vflux*(vnu1_Hz-vnu2_Hz) * (VLMIN_nm+VLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
---|
281 | rintensity = rflux*(rnu1_Hz-rnu2_Hz) * (RLMIN_nm+RLMAX_nm)*1e-9/2. /(PLANCK_si*LIGHTSPEED_mps);
|
---|
282 |
|
---|
283 | np[0] = (int)(uintensity * radius_m * radius_m * PI * inttime_s);
|
---|
284 | np[1] = (int)(bintensity * radius_m * radius_m * PI * inttime_s);
|
---|
285 | np[2] = (int)(vintensity * radius_m * radius_m * PI * inttime_s);
|
---|
286 | np[3] = (int)(rintensity * radius_m * radius_m * PI * inttime_s);
|
---|
287 |
|
---|
288 | if (verbose) cout<<"NPH "<<np[0]<<" "<<np[1]<<" "<<np[2]<<" " <<np[3]<<endl;
|
---|
289 |
|
---|
290 | numphot = np[0] + np[1] + np[2] + np[3];
|
---|
291 |
|
---|
292 | return(numphot);
|
---|
293 |
|
---|
294 | }
|
---|