1 | \section{Monte Carlo \label{sec:mc}}
|
---|
2 |
|
---|
3 | \subsection{Introduction \label{sec:mc:intro}}
|
---|
4 |
|
---|
5 | Many charasteristics of the extractor can only be investigated with the use of Monte-Carlo simulations~\cite{MC-Camera}
|
---|
6 | of signal pulses and noise for the following reasons:
|
---|
7 |
|
---|
8 | \begin{itemize}
|
---|
9 | \item While in real conditions, the signal can only be obtained in a Poisson distribution, simulated pulses of a specific
|
---|
10 | number of photo-electrons can be generated.
|
---|
11 | \item The intrinsic arrival time spread can be chosen within the simulation.
|
---|
12 | \item The noise auto-correlation in the low-gain channel cannot be determined from data,
|
---|
13 | but instead has to be retrieved from Monte-Carlo studies.
|
---|
14 | \item The same pulse can be studied with and without added noise, where the noise level can be deliberately adjusted.
|
---|
15 | \item The photo-multiplier and optical link gain fluctuations can be tuned or switched off completely.
|
---|
16 | \end{itemize}
|
---|
17 |
|
---|
18 | Nevertheless, there are always systematic differences between the simulation and the real detector. In our case, especially the
|
---|
19 | following short-comings are of concern:
|
---|
20 |
|
---|
21 | \begin{itemize}
|
---|
22 | \item The low-gain pulse is not yet simulated with the correct pulse width, but instead the same pulse shape as the one of the
|
---|
23 | high-gain channel has been used.
|
---|
24 | \item The low-gain pulse is delayed by only 15 FADC slices in the Monte-Carlo simulations, while it arrives about 16.5 FADC slices
|
---|
25 | after the high-gain pulse in real conditions.
|
---|
26 | \item No switching noise due to the low-gain switch has been simulated.
|
---|
27 | \item The intrinsic transit time spread of the photo-multipliers has not been simulated.
|
---|
28 | \item The total dynamic range of the entire signal transmission chain was set to infinite, thus the detector has been simulated
|
---|
29 | to be completely linear.
|
---|
30 | \end{itemize}
|
---|
31 |
|
---|
32 | For the subsequent studies, the following settings have been used:
|
---|
33 |
|
---|
34 | \begin{itemize}
|
---|
35 | \item The gain fluctuations for signal pulses were switched off.
|
---|
36 | \item The gain fluctuations for the background noise of the light of night sky were instead fully simulated, i.e. very close to
|
---|
37 | real conditions.
|
---|
38 | \item The intrinsic arrival time spread of the photons was set to be 1\,ns, as expected for gamma showers.
|
---|
39 | \item The conversion of total integrated charge to photo-electrons was set to be 7.8~FADC~counts
|
---|
40 | per photo-electron, independent of the signal strength.
|
---|
41 | \item The trigger jitter was set to be uniformly distributed over 1~FADC slice only.
|
---|
42 | \item Only one inner pixel has been simulated.
|
---|
43 | \end{itemize}
|
---|
44 |
|
---|
45 | The last point had the consequence that the extractor {\textit {\bf MExtractFixedWindowPeakSearch}} could not be tested since
|
---|
46 | it was equivalent to the sliding window.
|
---|
47 | In the following, we used the Monte-Carlo to determine especially the following quantities for each of the tested extractors:
|
---|
48 |
|
---|
49 | \begin{itemize}
|
---|
50 | \item The charge resolution as a function of the input signal strength.
|
---|
51 | \item The charge extraction bias as a function of the input signal strength.
|
---|
52 | \item The time resolution as a function of the input signal strength.
|
---|
53 | \item The effect of adding or removing noise for the above quantities.
|
---|
54 | \end{itemize}
|
---|
55 |
|
---|
56 | \subsection{Conversion Factors \label{sec:mc:convfactors}}
|
---|
57 |
|
---|
58 | The following figures~\ref{fig:mc:ChargeDivNphe_FixW} through~\ref{fig:mc:ChargeDivNphe_DFSpline} show the conversion factors
|
---|
59 | between reconstructed charge and the number of input photo-electrons for each of the tested extractors, with and without added noise
|
---|
60 | and for the high-gain and low-gain channels, respectively. One can see that the conversion factors depend on the extraction window size and
|
---|
61 | that the addition of noise raises the conversion factors uniformly for all fixed window extractors in the high-gain channel,
|
---|
62 | while the sliding window extractors show a bias a low signal intensities.
|
---|
63 |
|
---|
64 | \begin{figure}[htp]%%[t!]
|
---|
65 | \centering
|
---|
66 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps}
|
---|
67 | \vspace{\floatsep}
|
---|
68 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps}
|
---|
69 | \vspace{\floatsep}
|
---|
70 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps}
|
---|
71 | \vspace{\floatsep}
|
---|
72 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
|
---|
73 | \caption[Charge per Number of photo-electrons Fixed Windows]{Extracted charge per photoelectron versus number of photoelectrons,
|
---|
74 | for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
75 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
76 | \label{fig:mc:ChargeDivNphe_FixW}
|
---|
77 | \end{figure}
|
---|
78 |
|
---|
79 | \begin{figure}[htp]
|
---|
80 | \centering
|
---|
81 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps}
|
---|
82 | \vspace{\floatsep}
|
---|
83 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps}
|
---|
84 | \vspace{\floatsep}
|
---|
85 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps}
|
---|
86 | \vspace{\floatsep}
|
---|
87 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps}
|
---|
88 | \caption[Charge per Number of photo-electrons Sliding Windows]{Extracted charge per photoelectron versus number of photoelectrons,
|
---|
89 | for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
90 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
91 | \label{fig:mc:ChargeDivNphe_SlidW}
|
---|
92 | \end{figure}
|
---|
93 |
|
---|
94 | \begin{figure}[htp]
|
---|
95 | \centering
|
---|
96 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps}
|
---|
97 | \vspace{\floatsep}
|
---|
98 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps}
|
---|
99 | \vspace{\floatsep}
|
---|
100 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps}
|
---|
101 | \vspace{\floatsep}
|
---|
102 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps}
|
---|
103 | \caption[Charge per Number of photo-electrons Spline and Digital Filter]{Extracted charge per photoelectron versus number of photoelectrons,
|
---|
104 | for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
105 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
106 | \label{fig:mc:ChargeDivNphe_DFSpline}
|
---|
107 | \end{figure}
|
---|
108 |
|
---|
109 | \clearpage
|
---|
110 |
|
---|
111 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
112 |
|
---|
113 | \subsection{Measurement of the Biases \label{sec:mc:baises}}
|
---|
114 |
|
---|
115 | We fitted the conversion factors obtained from the previous section in the constant region (above 10\,phe) and used
|
---|
116 | them to convert the extracted charge back to equivalent photo-electrons. After subtracting the simulated number of photo-electrons,
|
---|
117 | the bias (in units of photo-electrons) is obtained.
|
---|
118 | \par
|
---|
119 | Figure~\ref{fig:mc:ConversionvsNphe_FixW} through~\ref{fig:mc:ChargeRes_DFSpline} show the results for the tested extractors, with and
|
---|
120 | without added noise and for the high and low-gain regions separately.
|
---|
121 | \par
|
---|
122 | As expected, the fixed window extractor do not show any bias up to statistical precision. All sliding window extractor, however, do show
|
---|
123 | a bias. Usually, the bias vanishes for signals above 5--10~photo-electrons, except for the sliding windows with window sizes above
|
---|
124 | 8~FADC slices. There, the bias only vanishes for signals above 20~photo-electrons. The size of the bias as well as the minimum signal
|
---|
125 | strength above which the bias vanishes are clearly correlated with the extraction window size. Therefore, smaller window sizes yield
|
---|
126 | smaller biases and extend their linear range further downwards. The best extractors have a negligible bias above about 5 photo-electrons.
|
---|
127 | This corresponds to the results found in section~\ref{sec:pedestals} where the lowest image cleaning threshold for extra-galactic
|
---|
128 | noise levels yielded about 5 photo-electrons as well.
|
---|
129 | \par
|
---|
130 | All integrating spline extractors and all sliding window extractors with extraction windows above or equal 6 FADC slices
|
---|
131 | yield the comparably smallest biases. The rest results to be about a factor 1.5 higher. The spline and digital filter biases fall
|
---|
132 | down very steeply.
|
---|
133 |
|
---|
134 |
|
---|
135 | \begin{figure}[htp]%%[t!]
|
---|
136 | \centering
|
---|
137 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps}
|
---|
138 | \vspace{\floatsep}
|
---|
139 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps}
|
---|
140 | \vspace{\floatsep}
|
---|
141 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps}
|
---|
142 | \vspace{\floatsep}
|
---|
143 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps}
|
---|
144 | \caption[Bias Fixed Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
|
---|
145 | versus number of photoelectrons,
|
---|
146 | for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
147 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
148 | \label{fig:mc:ConversionvsNphe_FixW}
|
---|
149 | \end{figure}
|
---|
150 |
|
---|
151 | \begin{figure}[htp]
|
---|
152 | \centering
|
---|
153 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps}
|
---|
154 | \vspace{\floatsep}
|
---|
155 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps}
|
---|
156 | \vspace{\floatsep}
|
---|
157 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps}
|
---|
158 | \vspace{\floatsep}
|
---|
159 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps}
|
---|
160 | \caption[Bias Sliding Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
|
---|
161 | versus number of photoelectrons,
|
---|
162 | for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
163 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
164 | \label{fig:mc:ConversionvsNphe_SlidW}
|
---|
165 | \end{figure}
|
---|
166 |
|
---|
167 | \begin{figure}[htp]
|
---|
168 | \centering
|
---|
169 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps}
|
---|
170 | \vspace{\floatsep}
|
---|
171 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps}
|
---|
172 | \vspace{\floatsep}
|
---|
173 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps}
|
---|
174 | \vspace{\floatsep}
|
---|
175 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps}
|
---|
176 | \caption[Bias Spline and Digital Filter]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
|
---|
177 | versus number of photoelectrons,
|
---|
178 | for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
179 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
180 | \label{fig:mc:ConversionvsNphe_DFSpline}
|
---|
181 | \end{figure}
|
---|
182 |
|
---|
183 | \clearpage
|
---|
184 |
|
---|
185 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
186 |
|
---|
187 | \subsection{Measurement of the Resolutions \label{sec:mc:resolutions}}
|
---|
188 |
|
---|
189 | \begin{figure}[htp]
|
---|
190 | \centering
|
---|
191 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_HiGain.eps}
|
---|
192 | \vspace{\floatsep}
|
---|
193 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_HiGain.eps}
|
---|
194 | \vspace{\floatsep}
|
---|
195 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_LoGain.eps}
|
---|
196 | \vspace{\floatsep}
|
---|
197 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_LoGain.eps}
|
---|
198 | \caption[Charge Resolution Fixed Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
|
---|
199 | for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
200 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
201 | \label{fig:mc:ChargeRes_FixW}
|
---|
202 | \end{figure}
|
---|
203 |
|
---|
204 | \begin{figure}[htp]
|
---|
205 | \centering
|
---|
206 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_HiGain.eps}
|
---|
207 | \vspace{\floatsep}
|
---|
208 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_HiGain.eps}
|
---|
209 | \vspace{\floatsep}
|
---|
210 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_LoGain.eps}
|
---|
211 | \vspace{\floatsep}
|
---|
212 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_LoGain.eps}
|
---|
213 | \caption[Charge Resolution Sliding Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
|
---|
214 | for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
215 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
216 | \label{fig:mc:ChargeRes_SlidW}
|
---|
217 | \end{figure}
|
---|
218 |
|
---|
219 | \begin{figure}[htp]
|
---|
220 | \centering
|
---|
221 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_HiGain.eps}
|
---|
222 | \vspace{\floatsep}
|
---|
223 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_HiGain.eps}
|
---|
224 | \vspace{\floatsep}
|
---|
225 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_LoGain.eps}
|
---|
226 | \vspace{\floatsep}
|
---|
227 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_LoGain.eps}
|
---|
228 | \caption[Charge Resolution Spline and Digital Filter]{The measured resolution
|
---|
229 | (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
|
---|
230 | for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
231 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
232 | \label{fig:mc:ChargeRes_DFSpline}
|
---|
233 | \end{figure}
|
---|
234 |
|
---|
235 | \clearpage
|
---|
236 |
|
---|
237 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
|
---|
238 |
|
---|
239 | \subsection{Charge Signals with and without Simulated Noise \label{fig:mc:sec:mc:chargenoise}}
|
---|
240 |
|
---|
241 | \begin{figure}[htp]
|
---|
242 | \centering
|
---|
243 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_SlidW_HiGain.eps}
|
---|
244 | \vspace{\floatsep}
|
---|
245 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_FixW_HiGain.eps}
|
---|
246 | \vspace{\floatsep}
|
---|
247 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_DFSpline_HiGain.eps}
|
---|
248 | \caption[Bias due to noise high-gain]{Bias due to noise: Difference of extracted charge of same events, with and without simulated noise,
|
---|
249 | for different extractor methods in the high-gain region.}
|
---|
250 | \label{fig:mc:Bias_HiGain}
|
---|
251 | \end{figure}
|
---|
252 |
|
---|
253 | \begin{figure}[htp]
|
---|
254 | \centering
|
---|
255 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_SlidW_LoGain.eps}
|
---|
256 | \vspace{\floatsep}
|
---|
257 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_FixW_LoGain.eps}
|
---|
258 | \vspace{\floatsep}
|
---|
259 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_Bias_DFSpline_LoGain.eps}
|
---|
260 | \caption[Bias due to noise low-gain]{Bias due to noise: Difference of extracted charge of same events, with and without simulated noise,
|
---|
261 | for different extractor methods in the low-gain region.}
|
---|
262 | \label{fig:mc:Bias_LoGain}
|
---|
263 | \end{figure}
|
---|
264 |
|
---|
265 | \clearpage
|
---|
266 |
|
---|
267 | \subsection{Arrival Times \label{sec:mc:times}}
|
---|
268 |
|
---|
269 | \begin{figure}[htp]%%[t!]
|
---|
270 | \centering
|
---|
271 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_HiGain.eps}
|
---|
272 | \vspace{\floatsep}
|
---|
273 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_HiGain.eps}
|
---|
274 | \vspace{\floatsep}
|
---|
275 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_LoGain.eps}
|
---|
276 | \vspace{\floatsep}
|
---|
277 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_LoGain.eps}
|
---|
278 | \caption[Time Resolution Sliding Windows]{The measured time resolution (RMS of extracted time minus simulated time)
|
---|
279 | versus number of photoelectrons,
|
---|
280 | for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
281 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
282 | \label{fig:mc:TimeRes_SlidW}
|
---|
283 | \end{figure}
|
---|
284 |
|
---|
285 | \begin{figure}[htp]
|
---|
286 | \centering
|
---|
287 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_HiGain.eps}
|
---|
288 | \vspace{\floatsep}
|
---|
289 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_HiGain.eps}
|
---|
290 | \vspace{\floatsep}
|
---|
291 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_LoGain.eps}
|
---|
292 | \vspace{\floatsep}
|
---|
293 | \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_LoGain.eps}
|
---|
294 | \caption[Time Resolution Spline and Digital Filter]{The measured time resolution (RMS of extracted time minus simulated time)
|
---|
295 | versus number of photoelectrons,
|
---|
296 | for spline and digital filter window extractors in different window sizes. The top plots show the high-gain and the bottom ones
|
---|
297 | low-gain regions. Left: without noise, right: with simulated noise.}
|
---|
298 | \label{fig:mc:TimeRes_DFSpline}
|
---|
299 | \end{figure}
|
---|
300 |
|
---|
301 |
|
---|
302 | %%% Local Variables:
|
---|
303 | %%% mode: latex
|
---|
304 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
305 | %%% End:
|
---|