1 | \section{Criteria for an optimal pedestal extraction}
|
---|
2 |
|
---|
3 | \ldots {\it In this section, the distinction is made between:
|
---|
4 | \begin{itemize}
|
---|
5 | \item Defining the pedestal RMS as contribution
|
---|
6 | to the extracted signal fluctuations (later used in the calibration)
|
---|
7 | \item Defining the Pedestal Mean and RMS as the result of distributions obtained by
|
---|
8 | applying the extractor to pedestal runs (yielding biases and modified widths).
|
---|
9 | \item Deriving the correct probability for background fluctuations based on the extracted signal height.
|
---|
10 | ( including biases and modified widths).
|
---|
11 | \end{itemize}
|
---|
12 | }
|
---|
13 |
|
---|
14 | \subsection{Pedestal RMS}
|
---|
15 |
|
---|
16 |
|
---|
17 | \vspace{1cm}
|
---|
18 | \ldots {\it Modified email by W. Wittek from 25 Oct 2004 and 10 Nov 2004}
|
---|
19 | \vspace{1cm}
|
---|
20 |
|
---|
21 | The background $BG$ (Pedestal)
|
---|
22 | can be completely described by the noise-autocorrelation matrix $\boldsymbol{B}$
|
---|
23 | (eq.~\ref{eq:autocorr}),
|
---|
24 | where the diagonal elements give what is usually denoted as the ``Pedestal RMS''. Note that
|
---|
25 | in the MAGIC readout, the diagonal elements do not scale exactly with the square root of
|
---|
26 | the number of slices as would be expected from pure stochasitic noise.
|
---|
27 |
|
---|
28 | \par
|
---|
29 |
|
---|
30 | By definition, the noise autocorrelation matrix $B$ and thus the ``pedestal RMS''
|
---|
31 | is independent from the signal extractor.
|
---|
32 |
|
---|
33 | \subsection{Bias and Error}
|
---|
34 |
|
---|
35 | Consider a large number of signals (FADC spectra), all with the same
|
---|
36 | integrated charge $ST$ (true signal). By applying some signal extractor
|
---|
37 | we obtain a distribution of extracted signals $SE$ (for fixed $ST$ and
|
---|
38 | fixed background fluctuations $BG$). The distribution of the quantity
|
---|
39 |
|
---|
40 | \begin{equation}
|
---|
41 | X = SE-ST
|
---|
42 | \end{equation}
|
---|
43 |
|
---|
44 | has the mean $B$ and the RMS $R$
|
---|
45 |
|
---|
46 | \begin{eqnarray}
|
---|
47 | B &=& <X> \\
|
---|
48 | R^2 &=& <(X-B)^2>
|
---|
49 | \end{eqnarray}
|
---|
50 |
|
---|
51 | One may also define
|
---|
52 |
|
---|
53 | \begin{equation}
|
---|
54 | D^2 = <(SE-ST)^2> = <(SE-ST-B + B)^2> = B^2 + R^2
|
---|
55 | \end{equation}
|
---|
56 |
|
---|
57 | $B$ is the bias, $R$ is the RMS of the distribution of $X$ and $D$ is something
|
---|
58 | like the (asymmetric) error of $SE$.
|
---|
59 | The distribution of $X$, and thus the parameters $B$ and $R$,
|
---|
60 | depend on the size of $ST$ and the size of the background fluctuations $BG$.
|
---|
61 |
|
---|
62 | \par
|
---|
63 |
|
---|
64 | For the normal image cleaning, knowledge of $B$ is sufficient and the
|
---|
65 | error $R$ should be know in order to calculate a correct background probability.
|
---|
66 | \par
|
---|
67 | Also for the model analysis $B$ and $R$ are needed, because you want to keep small
|
---|
68 | signals.
|
---|
69 | \par
|
---|
70 | In the case of the calibration with the F-Factor methoid,
|
---|
71 | the basic relation is:
|
---|
72 |
|
---|
73 | \begin{equation}
|
---|
74 | \frac{(\Delta ST)^2}{<ST>^2} = \frac{1}{<m_{pe}>} * F^2
|
---|
75 | \end{equation}
|
---|
76 |
|
---|
77 | Here $\Delta ST$ is the fluctuation of the true signal $ST$ due to the
|
---|
78 | fluctuation of the number of photo electrons. $ST$ is obtained from the
|
---|
79 | measured fluctuations of $SE$ ($RMS_{SE}$) by subtracting the fluctuation of the
|
---|
80 | extracted signal ($R$) due to the fluctuation of the pedestal.
|
---|
81 |
|
---|
82 | \begin{equation}
|
---|
83 | (\Delta ST)^2 = RMS_{SE}^2 - R^2
|
---|
84 | \end{equation}
|
---|
85 |
|
---|
86 | A way to check whether the right RMS has been subtracted is to make the
|
---|
87 | Razmick plot
|
---|
88 |
|
---|
89 | \begin{equation}
|
---|
90 | \frac{(\Delta ST)^2}{<ST>^2} \quad \textit{vs.} \quad \frac{1}{<ST>}
|
---|
91 | \end{equation}
|
---|
92 |
|
---|
93 | This should give a straight line passing through the origin. The slope of
|
---|
94 | the line is equal to
|
---|
95 |
|
---|
96 | \begin{equation}
|
---|
97 | c * F^2
|
---|
98 | \end{equation}
|
---|
99 |
|
---|
100 | where $c$ is the photon/ADC conversion factor $<ST>/<m_{pe}>$.
|
---|
101 |
|
---|
102 | \subsection{How to retrieve Bias $B$ and Error $R$}
|
---|
103 |
|
---|
104 | $R$ is in general different from the pedestal RMS. It cannot be
|
---|
105 | obtained by applying the signal extractor to pedestal events, especially
|
---|
106 | for large signals (e.g. calibration signals).
|
---|
107 | \par
|
---|
108 | In the case of the optimum filter, $R$ is in theory independent from the
|
---|
109 | signal amplitude $ST$ and depends only on the background $BG$, see eq.~\ref{of_noise}.
|
---|
110 | It can be obtained from the
|
---|
111 | fitted error of the extracted signal ($\Delta(SE)_{fitted}$),
|
---|
112 | which one can calculate for every event or by applying the extractor to a fixed window
|
---|
113 | of pure background events (``pedestal events'').
|
---|
114 |
|
---|
115 | \par
|
---|
116 |
|
---|
117 | In order to get the missing information, we did the following investigations:
|
---|
118 | \begin{enumerate}
|
---|
119 | \item Determine $R$ by applying the signal extractor to a fixed window
|
---|
120 | of pedestal events. The background fluctuations can be simulated with different
|
---|
121 | levels of night sky background and the continuous light, but no signal size
|
---|
122 | dependency can be retrieved with the method.
|
---|
123 | \item Determine bias $B$ and resolution $R$ from MC events with and without added noise.
|
---|
124 | Assuming that $R$ and $B$ are negligible for the events without noise, one can
|
---|
125 | get a dependency of both values from the size of the signal.
|
---|
126 | \item Determine $R$ from the fitted error of $SE$, which is possible for the
|
---|
127 | fit and the digital filter (eq.~\ref{of_noise}).
|
---|
128 | In prinicple, all dependencies can be retrieved with this method.
|
---|
129 | \end{enumerate}
|
---|
130 |
|
---|
131 | \subsubsection{Determine error $R$ by applying the signal extractor to a fixed window
|
---|
132 | of pedestal events}
|
---|
133 |
|
---|
134 | By applying the signal extractor to a fixed window of pedestal events, we
|
---|
135 | determined the parameter $R$ for the case of no signal ($ST = 0$). In the case of
|
---|
136 | all extractors using a fixed window from the beginning (extractors nr. \#1 to \#22
|
---|
137 | in section~\ref{sec:algorithms}), the results were exactly the same as calculating
|
---|
138 | the mean and the RMS of a same (fixed) number of FADC slices (the conventional ``Pedestal
|
---|
139 | Calculation'').
|
---|
140 |
|
---|
141 | \par
|
---|
142 | In the case of the amplitude extracting spline (extractor nr. \#27), we took the
|
---|
143 | spline value at a random place within the digitizing binning resolution (0.02 FADC slices) of
|
---|
144 | one central FADC slice.
|
---|
145 | In the case of the digital filter (extractor nr. \#28), the time shift was
|
---|
146 | randomized for each event within one central FADC slice.
|
---|
147 |
|
---|
148 | \par
|
---|
149 |
|
---|
150 | The following plots~\ref{fig:df:distped:run38993} through~\ref{fig:amp:relrms:run38996} show results
|
---|
151 | obtained with the second method for three background intensities:
|
---|
152 | \begin{enumerate}
|
---|
153 | \item Closed camera and no (Poissonian) fluctuation due to photons from the night sky background
|
---|
154 | \item The camera pointing to a galactic region with stars in the field of view
|
---|
155 | \item The camera illuminated by a continuous light source of high intensity causing much higher pedestal
|
---|
156 | fluctuations than in usual observation conditions.
|
---|
157 | \end{enumerate}
|
---|
158 |
|
---|
159 | Figures~\ref{fig:df:distped:run38993},~\ref{fig:df:distped:run38995},~\ref{fig:df:distped:run38996},
|
---|
160 | and~\ref{fig:amp:distped:run38993},~\ref{fig:amp:distped:run38995},~\ref{fig:amp:distped:run38996} show the
|
---|
161 | extracted pedestal distributions for the digital filter with cosmics weights (extractor~\#28) and the
|
---|
162 | spline amplitude (extractor~\#27), respectively for one examplary channel (corresponding to pixel 200).
|
---|
163 | One can see the (asymmetric) Poisson behaviour of the
|
---|
164 | night sky background photons for the distributions with open camera and the cutoff at the lower egde
|
---|
165 | for the distribution with high-intensity continuous light due to a limited pedestal offset and the cutoff
|
---|
166 | to negative fluctuations.
|
---|
167 | \par
|
---|
168 | Figures~\ref{fig:df:relmean:run38993},~\ref{fig:df:relmean:run38995},~\ref{fig:df:relmean:run38996},
|
---|
169 | and~\ref{fig:amp:relmean:run38993},~\ref{fig:amp:relmean:run38995},~\ref{fig:amp:relmean:run38996} show the
|
---|
170 | relative difference between the calculated pedestal mean and
|
---|
171 | the one obtained by applying the extractor for
|
---|
172 | all channels of the MAGIC camera. One can see that in all cases, the distribution is centered around zero,
|
---|
173 | while its width is never larger than 0.01 which corresponds about to the precision of the extracted mean for
|
---|
174 | the number of used events. (A very similar distribution is obtained by comparing the results
|
---|
175 | of the same pedestal calculator applied to different ranges of FADC slices.)
|
---|
176 | \par
|
---|
177 | Figures~\ref{fig:df:relrms:run38993},~\ref{fig:df:relrms:run38995},~\ref{fig:df:relrms:run38996},
|
---|
178 | and~\ref{fig:amp:relrms:run38993},~\ref{fig:amp:relrms:run38995},~\ref{fig:amp:relrms:run38996} show the
|
---|
179 | relative difference between the calculated pedestal RMS, normalized to an equivalent number of slices
|
---|
180 | (2.5 for the digital filter and 1. for the amplitude of the spline) and
|
---|
181 | the one obtained by applying the extractor for all channels of the MAGIC camera.
|
---|
182 | One can see that in all cases, the distribution is not centered around zero, but shows an offset depending
|
---|
183 | on the light intensity. The difference can be 10\% in the case of the digital filter and even 25\% for the
|
---|
184 | spline. This big difference for the spline is partly explained by the fact that the pedestals have to be
|
---|
185 | calculated from an even number of slices to account for the clock-noise. However, the (normalized) pedestal
|
---|
186 | RMS depends critically on the number of summed FADC slices, especially at very low numbers. In general,
|
---|
187 | the higher the number of summed FADC slices, the higher the (to the square root of the number of slices)
|
---|
188 | normalized pedestal RMS.
|
---|
189 |
|
---|
190 | \begin{figure}[htp]
|
---|
191 | \centering
|
---|
192 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_Signal_Pixel200.eps}
|
---|
193 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with
|
---|
194 | closed camera lids for one channel.}
|
---|
195 | \label{fig:df:distped:run38993}
|
---|
196 | \vspace{\floatsep}
|
---|
197 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_Signal_Pixel200.eps}
|
---|
198 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with galactic star background for one channel.}
|
---|
199 | \label{fig:df:distped:run38995}
|
---|
200 | \vspace{\floatsep}
|
---|
201 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_Signal_Pixel200.eps}
|
---|
202 | \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from run with
|
---|
203 | continuous light level 100 for one channel.}
|
---|
204 | \label{fig:df:distped:run38996}
|
---|
205 | \end{figure}
|
---|
206 |
|
---|
207 | \begin{figure}[htp]
|
---|
208 | \centering
|
---|
209 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_RelMean.eps}
|
---|
210 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Mean Pedestal per FADC slice from pedestal
|
---|
211 | run with closed camera lids}
|
---|
212 | \label{fig:df:relmean:run38993}
|
---|
213 | \vspace{\floatsep}
|
---|
214 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_RelMean.eps}
|
---|
215 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Mean Pedestal per FADC slice from pedestal
|
---|
216 | run with galactic star background}
|
---|
217 | \label{fig:df:relmean:run38995}
|
---|
218 | \vspace{\floatsep}
|
---|
219 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_RelMean.eps}
|
---|
220 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Mean Pedestal per FADC slice from run
|
---|
221 | with continuous light level: 100}
|
---|
222 | \label{fig:df:relmean:run38996}
|
---|
223 | \end{figure}
|
---|
224 |
|
---|
225 |
|
---|
226 | \begin{figure}[htp]
|
---|
227 | \centering
|
---|
228 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_RMSRelDiff.eps}
|
---|
229 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Pedestal RMS per FADC slice
|
---|
230 | (calculated out of 2 FADC slices each) from pedestal run
|
---|
231 | with closed camera lids for inner (left) and outer (right) pixels. An equivalent number of 2.5 FADC slices
|
---|
232 | has been used for the normalization of the pedestal RMS. The difference amounts to about 10\%.}
|
---|
233 | \label{fig:df:relrms:run38993}
|
---|
234 | \vspace{\floatsep}
|
---|
235 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_RMSRelDiff.eps}
|
---|
236 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Pedestal RMS per FADC slice
|
---|
237 | (calculated out of 2 FADC slices each) from pedestal run with galactic star background for inner (left)
|
---|
238 | and outer (right) pixels. An equivalent number of 2.5 FADC slices
|
---|
239 | has been used for the normalization of the pedestal RMS. The difference amounts to about 4\%.}
|
---|
240 | \label{fig:df:relrms:run38995}
|
---|
241 | \vspace{\floatsep}
|
---|
242 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_RMSRelDiff.eps}
|
---|
243 | \caption{MExtractTimeAndChargeDigitalFilter: Relative Difference Pedestal RMS per FADC slice
|
---|
244 | (calculated out of 2 FADC slices each) from run with continuous light level: 100 for inner (left)
|
---|
245 | and outer (right) pixels. An equivalent number of 2.5 FADC slices
|
---|
246 | has been used for the normalization of the pedestal RMS. The difference amounts to about 3--5\%.}
|
---|
247 | \label{fig:df:relrms:run38996}
|
---|
248 | \end{figure}
|
---|
249 |
|
---|
250 |
|
---|
251 | \begin{figure}[htp]
|
---|
252 | \centering
|
---|
253 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_Signal_Pixel200.eps}
|
---|
254 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run
|
---|
255 | with closed camera lids for one channel.}
|
---|
256 | \label{fig:amp:distped:run38993}
|
---|
257 | \vspace{\floatsep}
|
---|
258 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_Signal_Pixel200.eps}
|
---|
259 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run
|
---|
260 | with galactic star background for one channel.}
|
---|
261 | \label{fig:amp:distped:run38995}
|
---|
262 | \vspace{\floatsep}
|
---|
263 | \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_Signal_Pixel200.eps}
|
---|
264 | \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from run with
|
---|
265 | continuous light level: 100 for one channel.}
|
---|
266 | \label{fig:amp:distped:run38996}
|
---|
267 | \end{figure}
|
---|
268 |
|
---|
269 | \begin{figure}[htp]
|
---|
270 | \centering
|
---|
271 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_RelMean.eps}
|
---|
272 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Mean Pedestal per FADC slice
|
---|
273 | from pedestal run with closed camera lids}
|
---|
274 | \label{fig:amp:relmean:run38993}
|
---|
275 | \vspace{\floatsep}
|
---|
276 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_RelMean.eps}
|
---|
277 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Mean Pedestal per FADC slice
|
---|
278 | from pedestal run with galactic star background}
|
---|
279 | \label{fig:amp:relmean:run38995}
|
---|
280 | \vspace{\floatsep}
|
---|
281 | \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_RelMean.eps}
|
---|
282 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Mean Pedestal per FADC slice
|
---|
283 | from run with continuous light level: 100}
|
---|
284 | \label{fig:amp:relmean:run38996}
|
---|
285 | \end{figure}
|
---|
286 |
|
---|
287 |
|
---|
288 | \begin{figure}[htp]
|
---|
289 | \centering
|
---|
290 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_RMSRelDiff.eps}
|
---|
291 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Pedestal RMS per FADC slice
|
---|
292 | (calculated out of 2 FADC slices each) from pedestal run
|
---|
293 | with closed camera lids for inner (left) and outer (right) pixels. An equivalent number of 1 FADC slice
|
---|
294 | has been used for the normalization of the pedestal RMS. The difference amounts to about 20\%.}
|
---|
295 | \label{fig:amp:relrms:run38993}
|
---|
296 | \vspace{\floatsep}
|
---|
297 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_RMSRelDiff.eps}
|
---|
298 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Pedestal RMS per FADC slice
|
---|
299 | (calculated out of 2 FADC slices each) from pedestal run with galactic star background for inner (left)
|
---|
300 | and outer (right) pixels. An equivalent number of 1 FADC slice
|
---|
301 | has been used for the normalization of the pedestal RMS. The difference amounts to about 25\%.}
|
---|
302 | \label{fig:amp:relrms:run38995}
|
---|
303 | \vspace{\floatsep}
|
---|
304 | \includegraphics[height=0.23\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_RMSRelDiff.eps}
|
---|
305 | \caption{MExtractTimeAndChargeSpline with amplitude: Relative Difference Pedestal RMS per FADC slice
|
---|
306 | (calculated out of 2 FADC slices each) from run with continuous light level: 100 for inner (left)
|
---|
307 | and outer (right) pixels. An equivalent number of 1 FADC slice
|
---|
308 | has been used for the normalization of the pedestal RMS. The difference amounts to about 25\%.}
|
---|
309 | \label{fig:amp:relrms:run38996}
|
---|
310 | \end{figure}
|
---|
311 |
|
---|
312 |
|
---|
313 | \vspace{1cm}
|
---|
314 | \ldots{\it More test plots can be found under:
|
---|
315 | http://magic.ifae.es/$\sim$markus/ExtractorPedestals/ }
|
---|
316 | \vspace{1cm}
|
---|
317 |
|
---|
318 | %%% Local Variables:
|
---|
319 | %%% mode: latex
|
---|
320 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
321 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
322 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
323 | %%% TeX-master: "MAGIC_signal_reco."
|
---|
324 | %%% TeX-master: "MAGIC_signal_reco"
|
---|
325 | %%% TeX-master: "Pedestal"
|
---|
326 | %%% End:
|
---|