Ignore:
Timestamp:
04/26/12 11:43:46 (13 years ago)
Author:
neise
Message:
...testing...
File:
1 edited

Legend:

Unmodified
Added
Removed
  • fact/tools/pyscripts/pyfact/drs_spikes.py

    r13143 r13458  
    8989        return data.reshape(self.row, self.col)
    9090
     91class DRSSpikes_2D(object):
     92    """ remove spikes (single or double false readings) from DRS4 data
     93    Strategy:
     94    * filter the data, removing the signal, thus spike(s) are clearly visible
     95    * search single and double spikes
     96    * replace the spike by a value derived from the neighbors
     97   
     98    """
     99   
     100    def __init__(self, threshold=7.,
     101                 single_pattern=np.array( [-0.5, 1.0, -0.5]) ,
     102                 double_pattern=np.array([-1., 1., 1., -1.]),
     103                 user_action=lambda self, data: None,
     104                 debug = False):
     105        """ initialize spike filter
     106        template_single: template of a single slice spike
     107        template_double: template of a two slice spike
     108        """
     109
     110        self.threshold = threshold
     111        self.single_pattern = single_pattern * threshold
     112        self.double_pattern = double_pattern * threshold
     113       
     114        self.remove_signal = fir.RemoveSignal()
     115
     116        self.user_action = user_action
     117        self.debug = debug
     118
     119    def __call__(self, data):
     120        # shortcuts
     121        row, col = data.shape
     122        thr = self.threshold
     123       
     124        # these are: lists, which will contain positiones of spikes
     125        # lets see if this is feasible
     126        self.singles = []
     127        self.doubles = []
     128        singles = self.singles
     129        doubles = self.doubles
     130
     131        # indi means indicator, i.e. a filter output, which indicates, where spikes
     132        # are positioned in the unfiltered data
     133        # indi is delayed w.r.t. data by 1
     134        self.indi = self.remove_signal(data)
     135        indi = self.indi
     136
     137        # cand (candidates), is a tuple of two equal length np.arrays
     138        # each pair of array elements can be understood as coordinates, pointing out
     139        # where the condition was fullfilled in indi.
     140        # e.g. in pixel = cand[0][0] around slice = cand[1][0]
     141        # there is probably a spike
     142        #
     143        # for double spikes, two neighboring slices fulfill the condition
     144        # which lead to something like:
     145        # cand =( array([ ... 3, 3, ... ]) , array([ ... 102, 103 ...]) )
     146        cand = np.where(indi[:,1:-2] > thr)
     147        self.cand = cand
     148        # in order to verify, that the candidate is really a single or double
     149        # spike, we compare the spike with a 3 or 4 slices pattern.
     150        # therefor we want to slice out 4 slices out of indi, where ever the
     151        # condition was fullfilled
     152        #
     153        # note: since indi was sliced in the np.where statement,
     154        # the resulting cand coordinates are reduced by 1 in the slice coordinate
     155        # this is actually what we want, since a spike has a distinctive low-high-low
     156        # pattern in the indicator. So we *want* the indicator slices to be shifted 1
     157        # to the left
     158        # and in addition, by pure chance, the coordinates in cand[1] point directly
     159        # to the real spike in data, since indi was delayed by one anyway.
     160        cand_slices = np.empty( (len(cand[0]), 4), dtype=np.int )
     161        self.cand_slices = cand_slices
     162        for i in range(4):
     163            cand_slices[i] = indi[ (cand[0], cand[1]+i )
     164           
     165        # search for single spikes
     166        sp = self.single_pattern * np.sign( self.single_pattern )
     167        for i, can in enumerate(cand_slices[:-1]):
     168            can *= np.sign(sp)
     169            if np.all( can > sp):
     170                singles.append( (cand[0][i],can[1][i]) )
     171
     172        # I guess in principle it is possible, that a candidate looks like a
     173        # single and like a double, ... nut with the current patters
     174        # but in case one changes the patterns ... then it might happen.
     175        # In addition the treatment of double spikes is maybed not smart:
     176        #   In case both parts of a double spike fulfill the 1st condition
     177        #       only the first candidate will fulfill the 2nd condition
     178        #   In case only the first part fulfilled the 1st conition, then
     179        #       we are fine
     180        #   In case only the second part triggered the first time, then
     181        #       we sliced out the wrong piece and it wouldn't fulfull the 2nd anyway.
     182        #
     183        #   This means, in case there are neighboring hits in cand,
     184        #   The 2nd neighbor will never fulfill the 2nd condition.
     185
     186        # search for double spikes
     187        dp = self.double_pattern * np.sign( self.double_pattern )
     188        for i, can in enumerate( cand_slices ):
     189            can *= np.sign(dp)
     190            if np.all(can > dp):
     191                doubles.append( (cand[0][i],can[1][i]) )
     192
     193        self.user_action(self, data)
     194
     195        data = self.remove_single_spikes(singles, data)
     196        data = self.remove_double_spikes(doubles, data)
     197        return data
     198
     199    def remove_single_spikes(self, singles, data):
     200        for spike in singles:
     201            data[spike[0],spike[1]] = (data[spike[0],spike[1]-1] + data[spike[0],spike[1]+1]) / 2.
     202        return data
     203   
     204    def remove_double_spikes(self, doubles, data):
     205        for spike in doubles:
     206            data[spike[0],spike[1]:spike[1]+2] = (data[spike[0],spike[1]-1] + data[spike[0],spike[1]+2]) / 2.
     207        return data
     208
     209
    91210
    92211def _test():
Note: See TracChangeset for help on using the changeset viewer.