- Timestamp:
- 09/16/04 16:56:48 (20 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/Simulation/Detector/include-MFadc/MFadc.cxx
r2998 r5079 18 18 #include "MGFadcSignal.hxx" 19 19 20 MFadc::MFadc(Int_t pix, Float_t integral, Float_t fwhm, Float_t integralout, Float_t fwhmout, Float_t trigger_delay) {20 MFadc::MFadc(Int_t pix, Int_t shape, Float_t integral, Float_t fwhm, Int_t shapeout, Float_t integralout, Float_t fwhmout, Float_t trigger_delay) { 21 21 // 22 22 // Constructor overloaded II … … 43 43 fwhm_resp_outer = fwhmout; 44 44 integ_resp_outer = integralout; 45 46 cout<< "[MFadc] Setting up the MFadc with this values "<< endl ; 47 cout<< "[MFadc] - Inner pixels : "<< endl ; 48 cout<< "[MFadc] Response Area : "<<integral<<" adc counts"<< endl ; 49 cout<< "[MFadc] Response FWHM : "<<fwhm<<" ns"<< endl ; 50 cout<< "[MFadc] - Inner pixels : "<< endl ; 51 cout<< "[MFadc] Response Area : "<<integralout<<" adc counts"<< endl ; 52 cout<< "[MFadc] Response FWHM : "<<fwhmout<<" ns"<< endl ; 45 shape_resp=shape; 46 shape_resp_outer=shapeout; 47 48 cout<< "[MFadc] Setting up the MFadc with this values "<< endl ; 49 cout<< "[MFadc] - Inner pixels : "<< endl ; 50 switch(shape_resp){ 51 case 0: 52 cout<< "[MFadc] Pulse shape : Gaussian ("<<shape_resp<<")"<< endl ; 53 cout<< "[MFadc] Response Area : "<<integ_resp<<" adc counts"<< endl ; 54 cout<< "[MFadc] Response FWHM : "<<fwhm_resp<<" ns"<< endl ; 55 break; 56 case 1: 57 cout<< "[MFadc] Pulse shape : From Pulpo ("<<shape_resp<<")"<< endl ; 58 cout<< "[MFadc] Response Area : "<<integ_resp<<" adc counts"<< endl ; 59 break; 60 default: 61 cout<< "[MFadc] Pulse shape unknown"<<endl; 62 } 63 cout<< "[MFadc] - Outer pixels : "<< endl ; 64 switch(shape_resp_outer){ 65 case 0: 66 cout<< "[MFadc] Pulse shape : Gaussian ("<<shape_resp_outer<<")"<<endl; 67 cout<< "[MFadc] Response Area : "<<integ_resp_outer<<" adc counts"<<endl; 68 cout<< "[MFadc] Response FWHM : "<<fwhm_resp_outer<<" ns"<< endl ; 69 break; 70 case 1: 71 cout<< "[MFadc] Pulse shape : From Pulpo ("<<shape_resp_outer<<")"<<endl; 72 cout<< "[MFadc] Response Area : "<<integ_resp_outer<<" adc counts"<< endl ; 73 break; 74 default: 75 cout<< "[MFadc] Pulse shape unknown ("<<shape_resp_outer<<")"<<endl; 76 } 77 53 78 54 79 // … … 59 84 Float_t sigma ; 60 85 Float_t x, x0 ; 61 62 sigma = fwhm_resp / 2.35 ;63 x0 = 3*sigma;64 65 fadc_time_offset = trigger_delay-x0; // ns66 67 68 86 Float_t dX, dX2 ; 69 87 70 dX = WIDTH_FADC_TIMESLICE / SUBBINS ; 88 Float_t response_sum_inner, response_sum_outer; 89 response_sum_inner = 0.; 90 response_sum_outer = 0.; 91 92 dX = WIDTH_FADC_TIMESLICE / SUBBINS ; // Units: ns 71 93 dX2 = dX/2. ; 72 94 73 74 95 switch(shape_resp){ 96 97 case 0: 98 sigma = fwhm_resp / 2.35 ; 99 x0 = 3*sigma; 100 fadc_time_offset = trigger_delay-x0; // ns 101 102 for (i=0; i< RESPONSE_SLICES_MFADC ; i++ ) { 103 104 x = i * dX + dX2 ; 105 106 sing_resp[i] = expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ; 107 108 response_sum_inner += sing_resp[i]; 109 } 110 111 break; 112 case 1: 113 float p1,p2,p3,p4,p5,p6,p7; 114 float d; 115 float zed_slices; 116 // Parameters values extracted from fitting a real FADC response 117 // gaussian electronic pulse passed through the whole chain from 118 // transmitter boards to FADC. 119 p1 = 2.066; 120 p2 = 1.568; 121 p3 = 3; // This sets the peak of the pulse at x ~ 3 ADC slices 122 // It is just a safe value so that the pulse is well contained. 123 p4 = 0.00282; 124 p5 = 0.04093; 125 p6 = 0.2411; 126 p7 = -0.009442; 127 // Define the time before trigger to read FADC signal when it 128 // has to be written 129 fadc_time_offset = trigger_delay-p3*WIDTH_FADC_TIMESLICE; // ns 130 131 for (i=0; i< RESPONSE_SLICES_MFADC ; i++ ) { 132 x = i * dX + dX2; 133 134 // x has to be converted from ns to units FADC slices: 135 zed_slices=x/WIDTH_FADC_TIMESLICE-p3; 136 d=(zed_slices>0)?0.5:-0.5; 137 138 sing_resp[i] = (p1*exp(-p2*(exp(-p2*zed_slices)+zed_slices))+p4+ 139 p5*exp(-p2*(exp(-p2*zed_slices)+p6*zed_slices))+p7*d); 140 141 response_sum_inner += sing_resp[i]; 142 } 143 144 break; 145 default: 146 cout<<"[MFadc] MFadc::MFadc : Shape of FADC pulse for inner pixel unknown." 147 <<endl; 148 cout<<"[MFadc] MFadc::MFadc : Exiting Camera ..." 149 <<endl; 150 exit(1); 151 } 152 153 // Response for outer pixels 154 155 switch(shape_resp_outer){ 156 157 case 0: 158 sigma = fwhm_resp_outer / 2.35 ; 159 x0 = 3*sigma ; 160 fadc_time_offset = trigger_delay-x0; // ns 161 162 for (i=0; i< RESPONSE_SLICES_MFADC ; i++ ) { 163 164 x = i * dX + dX2 ; 165 166 // 167 // the value 1/sqrt(2*Pi*sigma^2) was introduced to normalize 168 // the area at the input value After this, the integral 169 // of the response will be integ_resp. 170 // 171 sing_resp_outer[i] = expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ; 172 response_sum_outer += sing_resp_outer[i]; 173 } 174 break; 175 case 1: 176 float p1,p2,p3,p4,p5,p6,p7; 177 float d; 178 float zed_slices; 179 // Parameters values extracted from fitting a real FADC response 180 // gaussian electronic pulse passed through the whole chain from 181 // transmitter boards to FADC. 182 p1 = 2.066; 183 p2 = 1.568; 184 p3 = 3; // This sets the peak of the pulse at x ~ 3 ADC slices 185 // It is just a safe value so that the pulse is well contained. 186 p4 = 0.00282; 187 p5 = 0.04093; 188 p6 = 0.2411; 189 p7 = -0.009442; 190 // Define the time before trigger to read FADC signal when it 191 // has to be written 192 fadc_time_offset = trigger_delay-p3*WIDTH_FADC_TIMESLICE; // ns 193 194 for (i=0; i< RESPONSE_SLICES_MFADC ; i++ ) { 195 x = i * dX + dX2; 196 197 zed_slices=x/WIDTH_FADC_TIMESLICE-p3; 198 d=(zed_slices>0)?0.5:-0.5; 199 200 sing_resp_outer[i] = (p1*exp(-p2*(exp(-p2*zed_slices)+zed_slices))+p4+ 201 p5*exp(-p2*(exp(-p2*zed_slices)+p6*zed_slices))+p7*d); 202 response_sum_outer += sing_resp_outer[i]; 203 } 204 break; 205 default: 206 cout<<"[MFadc] MFadc::MFadc : Shape of FADC pulse for inner pixel unknown." 207 <<endl; 208 cout<<"[MFadc] MFadc::MFadc : Exiting Camera ..." 209 <<endl; 210 exit(1); 211 } 212 213 // 214 // Normalize responses to values set trhough input card: (= set gain of electronic chain) 215 // Take into account that only 1 of every SUBBINS bins of sing_resp[] will be "sampled" by 216 // the FADC, so we have to correct for this to get the right "FADC integral" (=integ_resp) 217 // per photoelectron: 218 // 219 75 220 for (i=0; i< RESPONSE_SLICES_MFADC ; i++ ) { 76 77 x = i * dX + dX2 ; 78 79 // 80 // the value 1/(2*Pi*sigma^2) was introduced to normalize 81 // the area at the input value. After this, the integral 82 // of the response will be integ_resp. 83 // 84 sing_resp[i] = integ_resp / sqrt(2*3.1415926*sigma*sigma)* 85 expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ; 86 87 // 88 // The integral of the response above would be the sum of all 89 // sing_resp[i] values times the bin width WIDTH_RESPONSE_MFADC, 90 // and it would now equal "integ_resp". 91 // We want however that our actual measurement, the sum of FADC 92 // slices contents, is equal to integ_resp. Since in each FADC 93 // slice we will put the content of just one response bin, and 94 // there are a number SUBBINS of such response bins within 1 FADC 95 // slice, the needed factor is then: 96 // 97 sing_resp[i] *= (WIDTH_RESPONSE_MFADC*SUBBINS); 98 99 } 100 101 102 sigma = fwhm_resp_outer / 2.35 ; 103 x0 = 3*sigma ; 104 105 dX = WIDTH_FADC_TIMESLICE / SUBBINS ; 106 dX2 = dX/2. ; 107 108 for (i=0; i< RESPONSE_SLICES_MFADC ; i++ ) { 109 110 x = i * dX + dX2 ; 111 112 // 113 // the value 1/(2*Pi*sigma^2) was introduced to normalize 114 // the area at the input value After this, the integral 115 // of the response will be integ_resp. 116 // 117 sing_resp_outer[i] = integ_resp_outer / sqrt(2*3.1415926*sigma*sigma)* 118 expf(-0.5 * (x-x0)*(x-x0) / (sigma*sigma) ) ; 119 120 // 121 // The integral of the response above would be the sum of all 122 // sing_resp[i] values times the bin width WIDTH_RESPONSE_MFADC, 123 // and it would now equal "integ_resp". 124 // We want however that our actual measurement, the sum of FADC 125 // slices contents, is equal to integ_resp. Since in each FADC 126 // slice we will put the content of just one response bin, and 127 // there are a number SUBBINS of such response bins within 1 FADC 128 // slice, the needed factor is then: 129 // 130 sing_resp_outer[i] *= (WIDTH_RESPONSE_MFADC*SUBBINS); 131 } 221 sing_resp[i] *= integ_resp / response_sum_inner * SUBBINS; 222 sing_resp_outer[i] *= integ_resp_outer / response_sum_outer * SUBBINS; 223 } 132 224 133 225 // … … 156 248 // 157 249 memset(used, 0, CAMERA_PIXELS*sizeof(Bool_t)); 158 memset(output, 0, CAMERA_PIXELS*FADC_SLICES*sizeof( UChar_t));159 memset(output_lowgain, 0, CAMERA_PIXELS*FADC_SLICES*sizeof( UChar_t));250 memset(output, 0, CAMERA_PIXELS*FADC_SLICES*sizeof(Float_t)); 251 memset(output_lowgain, 0, CAMERA_PIXELS*FADC_SLICES*sizeof(Float_t)); 160 252 // 161 253 // Added 15 01 2004, AM: … … 380 472 // Adds signals to the fadc reponse from a given array 381 473 // 382 // parameter isthe number of the pixel and the values to be added474 // parameters are the number of the pixel and the values to be added 383 475 // 384 476 // … … 529 621 } 530 622 531 void MFadc::SetElecNoise(Float_t value ){623 void MFadc::SetElecNoise(Float_t value1, Float_t value2, UInt_t n_in_pix){ 532 624 533 625 UInt_t i; 534 626 627 fInnerPixelsNum = n_in_pix; 628 535 629 cout<<"MFadc::SetElecNoise ... generating database for electronic noise." 536 630 <<endl; 537 631 538 632 for (i=0;i<(UInt_t (SLICES_MFADC))*1001;i++){ 539 noise[i]=GenElec->Gaus(0., value ); 540 } 633 noise[i]=GenElec->Gaus(0., value1 ); 634 noise_outer[i]=GenElec->Gaus(0., value2 ); 635 } 541 636 542 637 cout<<"MFadc::SetElecNoise ... done"<<endl; … … 544 639 } 545 640 546 void MFadc::ElecNoise( Float_t value) {641 void MFadc::ElecNoise() { 547 642 // ============================================================ 548 643 // 549 // adds the noise due to optronic and electronic 550 // to the signal 644 // adds the noise due to optronics and electronics 645 // to the signal. This is noise which comes before the FADC, 646 // so it will be later scaled down in the low gain branch. 551 647 // 552 648 UInt_t startslice; 553 649 554 for ( Int_t i = 0 ; i < numpix; i++) { 555 // 556 // but at the beginning we must check if this pixel is 557 // hitted the first time 558 // 559 560 startslice=GenElec->Integer(((Int_t)SLICES_MFADC)*1000); 561 562 if ( used[i] == FALSE ) { 563 used [i] = TRUE ; 564 565 memcpy( (Float_t*)&sig[i][0], 650 for ( Int_t i = 0 ; i < numpix; i++) { 651 // 652 // but at the beginning we must check if this pixel is 653 // hitted the first time 654 // 655 656 startslice=GenElec->Integer(((Int_t)SLICES_MFADC)*1000); 657 658 if ( used[i] == FALSE ) 659 { 660 used [i] = TRUE ; 661 if (i < fInnerPixelsNum) 662 memcpy( (Float_t*)&sig[i][0], 566 663 (Float_t*)&noise[startslice], 567 664 ((Int_t) SLICES_MFADC)*sizeof(Float_t)); 568 569 for ( Int_t is=0 ; is< (Int_t)SLICES_MFADC ; is++ ) {570 571 }572 }573 //574 // Then the noise is introduced for each time slice575 //576 665 else 577 for ( Int_t is=0 ; is< (Int_t)SLICES_MFADC ; is++ ) { 578 579 sig[i][is] += noise[startslice+is] ; 580 581 } 582 } 666 memcpy( (Float_t*)&sig[i][0], 667 (Float_t*)&noise_outer[startslice], 668 ((Int_t) SLICES_MFADC)*sizeof(Float_t)); 669 } 670 671 // 672 // If pixel already in use, the noise is added each time slice 673 // 674 else 675 { 676 if (i < fInnerPixelsNum) 677 for ( Int_t is=0 ; is< (Int_t)SLICES_MFADC ; is++ ) 678 sig[i][is] += noise[startslice+is]; 679 else 680 for ( Int_t is=0 ; is< (Int_t)SLICES_MFADC ; is++ ) 681 sig[i][is] += noise_outer[startslice+is]; 682 } 683 } 583 684 } 584 685 … … 603 704 // ============================================================ 604 705 // 605 // adds the noise due to optronic and electronic 606 // to the signal 706 // adds the noise due to FADC electronics to the signal. This 707 // noise affects equally the high and low gain branches, that is, 708 // it is not scaled down in the low gain branch. 607 709 // 608 710 UInt_t startslice; 609 711 610 for ( Int_t i = 0 ; i < numpix; i++) { 611 612 if ( used[i] == TRUE ) { 613 startslice=GenElec->Integer((Int_t) SLICES_MFADC*999); 614 // 615 // Then the noise is introduced for each time slice 616 // 617 for ( Int_t is=0 ; is< FADC_SLICES; is++ ) { 618 619 if(digital_noise[startslice+is]+Int_t(output[i][is])<0) 620 output[i][is] = 0; 621 else 622 output[i][is] = 623 (digital_noise[startslice+is]+Int_t(output[i][is])>255 ? 624 255 : 625 UChar_t(digital_noise[startslice+is]+Int_t(output[i][is]))); 626 if(digital_noise[startslice+FADC_SLICES+is]+Int_t(output_lowgain[i][is])<0) 627 output_lowgain[i][is] = 0; 628 else 629 output_lowgain[i][is] = 630 (digital_noise[startslice+FADC_SLICES+is] 631 +Int_t(output_lowgain[i][is])>255? 632 255: 633 UChar_t(digital_noise[startslice+FADC_SLICES+is] 634 +Int_t(output_lowgain[i][is]))); 712 for ( Int_t i = 0 ; i < numpix; i++) 713 { 714 if ( used[i] == FALSE ) 715 continue; 716 717 startslice=GenElec->Integer((Int_t) SLICES_MFADC*999); 718 // 719 // Then the noise is introduced for each time slice 720 // 721 for ( Int_t is=0 ; is< FADC_SLICES; is++ ) 722 { 723 output[i][is] += digital_noise[startslice+is]; 724 output_lowgain[i][is] += digital_noise[startslice+FADC_SLICES+is]; 635 725 } 636 } 637 } 638 } 639 726 } 727 } 640 728 641 729 void MFadc::Scan() { … … 726 814 } 727 815 728 Float_t MFadc::GetPedestalNoise( Int_t pix, Int_t ishigh) { 729 // ============================================================ 730 // 731 // computes the pedestal sigma for channel pix 732 733 Float_t sigma=0; 816 //=========================================================================== 817 // 818 // Next function generates one pure noise event for pixel "pix", then adds 819 // up the readouts of a number n_slices of its FADC slices, this being the 820 // return value. 821 // 822 Float_t MFadc::AddNoiseInSlices( Int_t pix, Int_t ishigh, Int_t n_slices) { 823 824 Float_t sum=0; 825 Float_t fvalue = 0.; 734 826 UChar_t value=0; 735 827 … … 737 829 UInt_t startslice; 738 830 831 // 832 // If we deal with low gain, we have to scale the values in sig[][] by 833 // the gain ratio (high2low_gain), since "sig" contains here the noise 834 // produce before the receiver boards (for instance NSB noise) 835 // 739 836 factor=(ishigh?1.0:high2low_gain); 740 837 838 // 839 // Get at random a point in the FADC presimulated digital noise: 840 // 741 841 startslice=GenElec->Integer((Int_t) SLICES_MFADC*999); 742 842 743 for ( Int_t is=0; is < (Int_t)SLICES_MFADC ; is++ ) { 744 if (pedestal[pix]+(sig[pix][is]-pedestal[pix])/factor>0.0){ 745 value=(pedestal[pix]+(sig[pix][is]-pedestal[pix])/factor > 255. 746 ? 255 747 :UChar_t(pedestal[pix]+(sig[pix][is]-pedestal[pix])/factor+0.5)); 748 749 if(Int_t(value)+digital_noise[startslice+is]<0.0) 750 value=0; 751 else 752 value=(Int_t(value)+digital_noise[startslice+is]>255 753 ?255 754 :UChar_t(Int_t(value)+digital_noise[startslice+is])); 755 } 756 else { 757 value= 0; 758 if(Int_t(value)+digital_noise[startslice+is]<0.0) 759 value=0; 760 else 761 value=(Int_t(value)+digital_noise[startslice+is]>255 762 ?255 763 :UChar_t(Int_t(value)+digital_noise[startslice+is])); 764 } 765 sigma+=((Float_t)value-pedestal[pix])*((Float_t)value-pedestal[pix]); 766 767 } 768 769 sigma=sqrt(sigma/(SLICES_MFADC-1)); 770 771 return sigma; 772 } 843 for ( Int_t is=0; is < n_slices ; is++ ) 844 { 845 fvalue = pedestal[pix]+(sig[pix][is]-pedestal[pix])/factor; 846 fvalue += digital_noise[startslice+is]; 847 848 fvalue = fvalue < 0? fvalue-0.5 : fvalue+0.5; 849 850 value = fvalue < 0.? (UChar_t) 0 : 851 (fvalue > 255.? 255 : (UChar_t) fvalue); 852 853 854 // Add up slices: 855 sum += value - pedestal[pix]; 856 } 857 858 return sum; 859 } 860 861 //======================================================================= 773 862 774 863 void MFadc::TriggeredFadc(Float_t time) { … … 786 875 iFirstSlice = (Int_t) ( 0.5 + time / WIDTH_FADC_TIMESLICE ) ; 787 876 788 for ( Int_t ip=0; ip<numpix; ip++ ) { 789 790 if ( used[ip] == kTRUE ) { 791 i=0; 792 for ( Int_t is=iFirstSlice ; is < (iFirstSlice+FADC_SLICES) ; is++ ) 793 { 794 if (is< (Int_t)SLICES_MFADC && sig[ip][is]>0.0) 795 { 796 797 output[ip][i]=(sig[ip][is] > 255. ? 255 :(UChar_t) (sig[ip][is]+0.5)); 798 output_lowgain[ip][i]= 799 (Int_t)(pedestal[ip]+(sig[ip][is]-pedestal[ip])/high2low_gain+0.5) > 255. ? 255 : 800 (UChar_t)(pedestal[ip]+(sig[ip][is]-pedestal[ip])/high2low_gain+0.5); 801 i++; 802 803 } 804 else if(sig[ip][is]>=0.0) 805 { 806 output[ip][i]= (UChar_t)(pedestal[ip]+0.5); 807 output_lowgain[ip][i]= (UChar_t)(pedestal[ip]+0.5); 808 i++; 809 } 810 else 811 { 812 output[ip][i]= 0; 813 if((pedestal[ip]+(sig[ip][is]-pedestal[ip])/high2low_gain)<0) 814 output_lowgain[ip][i]= 0; 815 else 816 output_lowgain[ip][i]=(UChar_t)(pedestal[ip]+(sig[ip][is]-pedestal[ip])/high2low_gain+0.5); 817 i++; 818 } 819 } 820 } 821 else 822 // Pixels with no C-photons in the case that camera is run with 823 // no noise (nor NSB neither electronic) 824 { 877 878 for ( Int_t ip=0; ip<numpix; ip++ ) 879 { 880 881 if ( used[ip] == kFALSE) 882 // Pixels with no C-photons, in the case that camera is being run with 883 // no noise (nor NSB neither electronic). We then set the mean pedestal as 884 // signal, since when analyzing the camera output file, MARS will subtract 885 // it anyway! 886 { 825 887 for ( Int_t i=0 ; i < FADC_SLICES ; i++ ) 826 { 827 output[ip][i]= (UChar_t)(pedestal[ip]+0.5); 828 output_lowgain[ip][i]= (UChar_t)(pedestal[ip]+0.5); 829 } 830 } 831 } 832 833 } 888 { 889 output[ip][i]= pedestal[ip]; 890 output_lowgain[ip][i]= pedestal[ip]; 891 } 892 continue; 893 } 894 895 i=0; 896 for ( Int_t is=iFirstSlice ; is < (iFirstSlice+FADC_SLICES) ; is++ ) 897 { 898 if (is < (Int_t)SLICES_MFADC) 899 { 900 output[ip][i] = sig[ip][is]; 901 902 // Low gain is scaled down by the factor high2low_gain: 903 output_lowgain[ip][i]= pedestal[ip] + (sig[ip][is]-pedestal[ip])/high2low_gain; 904 } 905 else // We are beyond the simulated signal history in sig[][]! Put just mean pedestal! 906 { 907 output[ip][i] = pedestal[ip]; 908 output_lowgain[ip][i]= pedestal[ip]; 909 } 910 i++; 911 } 912 } 913 } 914 834 915 835 916 void MFadc::ShowSignal (MMcEvt *McEvt, Float_t trigTime) { … … 856 937 // the list of analog signal histograms 857 938 // at the beginning we initalise 10 elements 858 // but this array expand automatic ly if neccessay939 // but this array expand automatically if neccessay 859 940 860 941 Int_t ic = 0 ; … … 865 946 sprintf (name, "fadc signal %d", i ) ; 866 947 867 hist = new TH1F(dumm, name, SLICES_MFADC, fadc_time_offset, TOTAL_TRIGGER_TIME+fadc_time_offset);948 hist = new TH1F(dumm, name, (Int_t)SLICES_MFADC, fadc_time_offset, TOTAL_TRIGGER_TIME+fadc_time_offset); 868 949 // 869 950 // fill the histogram … … 911 992 // time slice which would be read. 912 993 913 return (output[pixel][slice]); 994 // Since May 1 2004, we do the rounding and the truncation to the range 995 // 0-255 counts here. (A. Moralejo) 996 997 Float_t out = output[pixel][slice] > 0. ? 998 output[pixel][slice]+0.5 : output[pixel][slice]-0.5; 999 // (add or subtract 0.5 for correct rounding) 1000 1001 return (out < 0.? (UChar_t) 0 : 1002 (out > 255.? (UChar_t) 255 : 1003 (UChar_t) out)); 914 1004 } 915 1005 … … 918 1008 919 1009 // It returns the analog signal for a given pixel and a given FADC 920 // time slice which would be read. 1010 // time slice which would be read. Same comment as above. 921 1011 922 return (output_lowgain[pixel][slice]); 923 } 924 925 926 1012 Float_t outlow = output_lowgain[pixel][slice] > 0. ? 1013 output_lowgain[pixel][slice]+0.5 : 1014 output_lowgain[pixel][slice]-0.5; 1015 // (add or subtract 0.5 for correct rounding) 1016 1017 return (outlow < 0.? (UChar_t) 0 : 1018 (outlow > 255.? (UChar_t) 255 : 1019 (UChar_t) outlow)); 1020 } 1021 1022 1023
Note:
See TracChangeset
for help on using the changeset viewer.