Ignore:
Timestamp:
12/20/04 13:26:56 (20 years ago)
Author:
gaug
Message:
*** empty log message ***
File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Performance.tex

    r5632 r5637  
    132132\end{figure}
    133133
     134\begin{figure}[htp]
     135\centering
     136\includegraphics[height=0.95\textheight]{UnsuitVsExtractor-23LedsBlue-Colour-00.eps}
     137\caption{Uncalibrated pixels and pixels outside of the Gaussian distribution for a high-intensity blue pulse.}
     138\label{fig:unsuited:23ledsblue}
     139\end{figure}
     140
    134141One can see that in general, big extraction windows raise the
    135142number of un-calibrated pixels and are thus less stable. Especially for the very low-intensity
     
    213220\par
    214221Figures~\ref{fig:phe:5ledsuv},~\ref{fig:phe:1leduv},~\ref{fig:phe:23ledsblue}~and~\ref{fig:phe:2ledsgreen} show
    215 some of the obtained results. Although one can see an amazing stability for the standard 5Leds UV pulse, there
    216 is a considerable difference for all shown non-standard pulses. Especially the pulses from green and blue LEDs
     222some of the obtained results. Although one can see an amazing stability for the standard 5Leds UV pulse,
     223there is a considerable difference for all shown non-standard pulses. Especially the pulses from green
     224and blue LEDs
    217225show a clear dependency on the extraction window of the number of photo-electrons. Only the largest
    218226extraction windows seem to catch the entire range of (jittering) secondary pulses and get also the ratio
    219227of outer vs. inner pixels right.
     228\par
     229The strongest discrepancy is observed in the low-gain extraction (fig.~\ref{fig:phe:23ledsblue}) where all
     230fixed window extractors
     231
    220232
    221233\begin{figure}[htp]
     
    256268
    257269
     270\begin{figure}[htp]
     271\centering
     272\includegraphics[height=0.92\textheight]{PheVsExtractor-23LedsBlue-Colour-00.eps}
     273\caption{Number of photo-electrons from a typical, high-gain saturating calibration pulse of colour blue,
     274reconstructed with each of the tested signal extractors.
     275The first plots shows the number of photo-electrons obtained for the inner pixels, the second one
     276for the outer pixels and the third shows the ratio of the mean number of photo-electrons for the
     277outer pixels divided by the mean number of photo-electrons for the inner pixels. Points
     278denote the mean of all not-excluded pixels, the error bars their RMS.}
     279\label{fig:phe:23ledsblue}
     280\end{figure}
     281
    258282One can see that all extractor using a large window belong to the class of extractors being affected
    259283by the secondary pulses. The only exception to this rule is the digital filter which - despite of its
     
    295319\subsubsection{Time resolution}
    296320
    297 
    298 
     321\begin{figure}[htp]
     322\centering
     323\includegraphics[height=0.25\textheight]{RelArrTime_Pixel97_10LedUV_Extractor32.eps}
     324\includegraphics[height=0.25\textheight]{RelArrTime_Pixel97_10LedUV_Extractor23.eps}
     325\caption{Example of a two distributions of relative arrival times of an inner pixel with respect to
     326the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter
     327 (extractor \#32), the right plot shows the result obtained with the half-maximum of the spline. A
     328medium sized UV-pulse (10Leds UV) has been used which does not saturate the high-gain readout channel.}
     329\label{fig:reltimesinner}
     330\end{figure}
     331
     332\begin{figure}[htp]
     333\centering
     334\includegraphics[width=0.45\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor32.eps}
     335\includegraphics[width=0.45\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor23.eps}
     336\caption{Example of a two distributions of relative arrival times of an outer pixel with respect to
     337the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter
     338 (extractor \#32), the right plot shows the result obtained with the half-maximum of the spline. A
     339medium sized UV-pulse (10Leds UV) has been used which does not saturate the high-gain readout channel.}
     340\label{fig:reltimesouter}
     341\end{figure}
     342
     343\begin{figure}[htp]
     344\centering
     345\includegraphics[width=0.45\linewidth]{RelArrTime_Pixel97_10LedBlue_Extractor32.eps}
     346\includegraphics[width=0.45\linewidth]{RelArrTime_Pixel97_10LedBlue_Extractor23.eps}
     347\caption{Example of a two distributions of relative arrival times of an inner pixel with respect to
     348the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter
     349 (extractor \#32), the right plot shows the result obtained with the half-maximum of the spline. A
     350medium sized Blue-pulse (10Leds Blue) has been used which saturates the high-gain readout channel.}
     351\label{fig:reltimesinner}
     352\end{figure}
     353
     354\begin{figure}[htp]
     355\centering
     356\includegraphics[width=0.45\linewidth]{RelArrTime_Pixel400_10LedBlue_Extractor32.eps}
     357\includegraphics[width=0.45\linewidth]{RelArrTime_Pixel400_10LedBlue_Extractor23.eps}
     358\caption{Example of a two distributions of relative arrival times of an outer pixel with respect to
     359the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter
     360 (extractor \#32), the right plot shows the result obtained with the half-maximum of the spline. A
     361medium sized Blue-pulse (10Leds Blue) has been used which saturates the high-gain readout channel.}
     362\label{fig:reltimesouter}
     363\end{figure}
     364
     365
     366
     367\clearpage
    299368
    300369\subsection{Pulpo Pulses}
     
    317386%%% TeX-master: "MAGIC_signal_reco."
    318387%%% TeX-master: "MAGIC_signal_reco"
     388%%% TeX-master: "MAGIC_signal_reco"
    319389%%% End:
Note: See TracChangeset for help on using the changeset viewer.