Changeset 6301 for trunk/MagicSoft/TDAS-Extractor/Pedestal.tex
- Timestamp:
- 02/08/05 20:19:23 (20 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Pedestal.tex
r6286 r6301 1 1 \section{Pedestal Extraction \label{sec:pedestals}} 2 2 3 \ldots {\it In this section, the distinction is made between:4 \begin{itemize}5 \item Defining the pedestal RMS as contribution6 to the extracted signal fluctuations (later used in the calibration)7 \item Defining the Pedestal Mean and RMS as the result of distributions obtained by8 applying the extractor to pedestal runs (yielding biases and modified widths).9 \item Deriving the correct probability for background fluctuations based on the extracted signal height.10 ( including biases and modified widths).11 \end{itemize}12 }13 14 3 \subsection{Pedestal RMS} 15 16 17 \vspace{1cm}18 \ldots {\it Modified email by W. Wittek from 25 Oct 2004 and 10 Nov 2004}19 \vspace{1cm}20 4 21 5 The background $BG$ (Pedestal) … … 31 15 32 16 Consider a large number of signals (FADC spectra), all with the same 33 integrated charge $ST$ (true signal). By applying somesignal extractor17 integrated charge $ST$ (true signal). By applying a signal extractor 34 18 we obtain a distribution of extracted signals $SE$ (for fixed $ST$ and 35 19 fixed background fluctuations $BG$). The distribution of the quantity … … 43 27 \begin{eqnarray} 44 28 B &=& <X> \\ 45 R ^2 &=& <(X-B)^2>29 R &=& \sqrt{<(X-B)^2>} 46 30 \end{eqnarray} 47 31 48 One may also define 49 50 \begin{equation} 51 D^2 = <(SE-ST)^2> = <(SE-ST-B + B)^2> = B^2 + R^2 52 \end{equation} 53 54 The parameter $B$ can be called the bias of the pedestal extractor and $R$ 55 the RMS of the distribution of $X$ and $D$ is something 56 like the (asymmetric) error of $SE$. 57 The distribution of $X$, and thus the parameters $B$ and $R$, 32 The parameter $B$ can be called the {\textit{\bf bias}} of the pedestal extractor and $R$ 33 the RMS of the distribution of $X$ which 58 34 depend generally on the size of $ST$ and the size of the background fluctuations $BG$. 59 35 … … 63 39 error $R$ should be known in order to calculate a correct background probability. 64 40 \par 65 Also for the model analysis $B$ and $R$ are needed if one wants to keep small41 Also for the model analysis, $B$ and $R$ are needed if one wants to keep small 66 42 signals. 67 \par 68 In the case of the calibration with the F-Factor methoid, 43 44 \subsection{Pedestal Fluctuations as Contribution to the Signal Fluctuations} 45 46 In case of the calibration with the F-Factor methoid, 69 47 the basic relation is: 70 48 … … 74 52 75 53 Here $\Delta ST$ is the fluctuation of the true signal $ST$ due to the 76 fluctuation of the number of photo electrons. $ST$ is obtained from the 77 measured fluctuations of $SE$ ($RMS_{SE}$) by subtracting those fluctuations of the 78 extracted signal which are due to the fluctuation of the pedestal ($R$)\footnote{% 54 fluctuation of the number of photo-electrons. $ST$ is obtained from the 55 measured fluctuations of $SE$ ($RMS_{SE}$) subtracting those contributions to the 56 fluctuations of the 57 extracted signal which are due to the fluctuation of the pedestal\footnote{% 79 58 A way to check whether the right RMS has been subtracted is to make the 80 Razmickplot59 ``Razmick''-plot 81 60 82 61 \begin{equation} … … 98 77 \end{equation} 99 78 100 \subsection{How to Retrieve Bias $B$ and Error $R$} 79 If $R$ does not dependent on the signal height, (as it is the case 80 for the digital filter, eq.~\ref{eq:of_noise}), then one can retrieve $R$ by 81 applying the signal extractor on a {\textit{\bf fixed window}} of pedestal events. 82 83 \subsection{Methods to Retrieve Bias $B$ and Errors $R$} 101 84 102 85 $R$ is in general different from the pedestal RMS. It cannot be … … 104 87 for large signals (e.g. calibration signals). 105 88 \par 106 In the case of the optimumfilter, $R$ is in theory independent from the107 signal amplitude $ST$ and depends only on the background $BG$ (eq.~\ref{ of_noise}).89 In the case of the digital filter, $R$ is in theory independent from the 90 signal amplitude $ST$ and depends only on the background $BG$ (eq.~\ref{eq:of_noise}). 108 91 It can be obtained from the 109 92 fitted error of the extracted signal ($\Delta(SE)_{fitted}$), … … 117 100 \item Determine $R$ by applying the signal extractor to a fixed window 118 101 of pedestal events. The background fluctuations can be simulated with different 119 levels of night sky background and the continuous light , but no signal size102 levels of night sky background and the continuous light source, but no signal size 120 103 dependency can be retrieved with the method. 121 104 \item Determine bias $B$ and resolution $R$ from MC events with and without added noise. … … 123 106 get a dependency of both values from the size of the signal. 124 107 \item Determine $R$ from the fitted error of $SE$, which is possible for the 125 fit and the digital filter (eq.~\ref{ of_noise}).108 fit and the digital filter (eq.~\ref{eq:of_noise}). 126 109 In prinicple, all dependencies can be retrieved with this method. 127 110 \end{enumerate} … … 133 116 determine the parameter $R$ for the case of no signal ($ST = 0$). In the case of 134 117 all extractors using a fixed window from the beginning (extractors nr. \#1 to \#22 135 in section~\ref{sec:algorithms}), the results are thus the same by constructionas calculating136 the mean and the RMS of a same (fixed) number of FADC slices (the conventional ``Pedestal137 Calculation''). 138 \par 139 In MARS, this possibility is implemented with a function-call to 140 {\textit{\bf MJPedestal::SetExtractionWithExtractorRndm()}}. 141 \par 142 In the case of the amplitude extracting spline(extractor nr. \#23), we placed the118 in section~\ref{sec:algorithms}), the results are by construction the same as calculating 119 the pedestal RMS. 120 \par 121 In MARS, this possibility is implemented with a function-call to: \\ 122 123 {\textit{\bf MJPedestal::SetExtractionWithExtractorRndm()}}. \\ 124 125 In the case of the {\textit{\bf amplitude extracting spline}} (extractor nr. \#23), we placed the 143 126 spline maximum value (which determines the exact extraction window) at a random place 144 within the digitizing binning resolution (0.01 FADC slices) 145 of one central FADC slice. 146 In the case of the digital filter (extractor nr. \#28), the time shift was 147 randomized for each event within one central FADC slice. 127 within the digitizing binning resolution of one central FADC slice. 128 In the case of the {\textit{\bf digital filter}} (extractor nr. \#28), the time shift was 129 randomized for each event within a fixed global extraction window. 148 130 149 131 \par … … 157 139 fluctuations than in usual observation conditions. 158 140 \end{enumerate} 141 142 143 \begin{figure}[htp] 144 \centering 145 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_Signal_Pixel200.eps} 146 \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with 147 closed camera lids for one channel.} 148 \label{fig:df:distped:run38993} 149 \vspace{\floatsep} 150 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_Signal_Pixel200.eps} 151 \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with 152 extra-galactic star background for one channel.} 153 \label{fig:df:distped:run38995} 154 \vspace{\floatsep} 155 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_Signal_Pixel200.eps} 156 \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from run with 157 continuous light level 100 for one channel.} 158 \label{fig:df:distped:run38996} 159 \end{figure} 160 161 \begin{figure}[htp] 162 \centering 163 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RelMean.eps} 164 \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from pedestal 165 run with closed camera lids (in photo-electrons)} 166 \label{fig:df:relmean:run38993} 167 \vspace{\floatsep} 168 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RelMean.eps} 169 \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from pedestal 170 run with extra-galactic star background (in photo-electrons)} 171 \label{fig:df:relmean:run38995} 172 \vspace{\floatsep} 173 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RelMean.eps} 174 \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from run 175 with continuous light level: 100 (in photo-electrons)} 176 \label{fig:df:relmean:run38996} 177 \end{figure} 178 179 180 \begin{figure}[htp] 181 \centering 182 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RMSDiff.eps} 183 \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm 184 appied on a fixed window, and simply summing up the same number of FADC slices. 185 Pedestal run 186 with closed camera lids for inner (left) and outer (right) pixels. } 187 \label{fig:df:relrms:run38993} 188 \vspace{\floatsep} 189 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RMSDiff.eps} 190 \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm 191 appied on a fixed window, and simply summing up the same number of FADC slices. 192 from pedestal run with extra-galactic star background for inner (left) 193 and outer (right) pixels. } 194 \label{fig:df:relrms:run38995} 195 \vspace{\floatsep} 196 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RMSDiff.eps} 197 \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm 198 appied on a fixed window, and simply summing up the same number of FADC slices. 199 from run with continuous light level: 100 for inner (left) 200 and outer (right) pixels. } 201 \label{fig:df:relrms:run38996} 202 \end{figure} 203 204 205 \begin{figure}[htp] 206 \centering 207 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_Signal_Pixel200.eps} 208 \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run 209 with closed camera lids for one channel.} 210 \label{fig:amp:distped:run38993} 211 \vspace{\floatsep} 212 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_Signal_Pixel200.eps} 213 \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run 214 with extra-galactic star background for one channel.} 215 \label{fig:amp:distped:run38995} 216 \vspace{\floatsep} 217 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_Signal_Pixel200.eps} 218 \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from run with 219 continuous light level: 100 for one channel.} 220 \label{fig:amp:distped:run38996} 221 \end{figure} 222 223 \begin{figure}[htp] 224 \centering 225 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RelMean.eps} 226 \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm 227 appied on a fixed window, and simply summing up the same number of FADC slices. 228 Pedestal run with closed camera lids.} 229 \label{fig:amp:relmean:run38993} 230 \vspace{\floatsep} 231 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RelMean.eps} 232 \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm 233 appied on a fixed window, and simply summing up the same number of FADC slices 234 Pedestal run with extra-galactic star background.} 235 \label{fig:amp:relmean:run38995} 236 \vspace{\floatsep} 237 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RelMean.eps} 238 \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm 239 appied on a fixed window, and simply summing up the same number of FADC slices. 240 Pedestal run with continuous light level: 100} 241 \label{fig:amp:relmean:run38996} 242 \end{figure} 243 244 245 \begin{figure}[htp] 246 \centering 247 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RMSDiff.eps} 248 \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction 249 algorithm appied on a fixed window, and simply summing up the same number of FADC slices. 250 Pedestal run 251 with closed camera lids for inner (left) and outer (right) pixels. } 252 \label{fig:amp:relrms:run38993} 253 \vspace{\floatsep} 254 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RMSDiff.eps} 255 \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction 256 algorithm appied on a fixed window, and simply summing up the same number of FADC slices. 257 Pedestal run with extra-galactic star background for inner (left) 258 and outer (right) pixels.} 259 \label{fig:amp:relrms:run38995} 260 \vspace{\floatsep} 261 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RMSDiff.eps} 262 \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction 263 algorithm appied on a fixed window, and simply summing up the same number of FADC slices. 264 Pedestal run with continuous light level: 100 for inner (left) 265 and outer (right) pixels.} 266 \label{fig:amp:relrms:run38996} 267 \end{figure} 159 268 160 269 Figures~\ref{fig:df:distped:run38993},~\ref{fig:df:distped:run38995},~\ref{fig:df:distped:run38996}, … … 189 298 normalized pedestal RMS. 190 299 191 \begin{figure}[htp]192 \centering193 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38993_Signal_Pixel200.eps}194 \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with195 closed camera lids for one channel.}196 \label{fig:df:distped:run38993}197 \vspace{\floatsep}198 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38995_Signal_Pixel200.eps}199 \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from pedestal run with200 extra-galactic star background for one channel.}201 \label{fig:df:distped:run38995}202 \vspace{\floatsep}203 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_00_18_02_14_Run_38996_Signal_Pixel200.eps}204 \caption{MExtractTimeAndChargeDigitalFilter: Distribution of extracted "pedestals" from run with205 continuous light level 100 for one channel.}206 \label{fig:df:distped:run38996}207 \end{figure}208 209 \begin{figure}[htp]210 \centering211 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RelMean.eps}212 \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from pedestal213 run with closed camera lids (in photo-electrons)}214 \label{fig:df:relmean:run38993}215 \vspace{\floatsep}216 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RelMean.eps}217 \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from pedestal218 run with extra-galactic star background (in photo-electrons)}219 \label{fig:df:relmean:run38995}220 \vspace{\floatsep}221 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RelMean.eps}222 \caption{MExtractTimeAndChargeDigitalFilter: Difference in mean pedestal (per FADC slice) from run223 with continuous light level: 100 (in photo-electrons)}224 \label{fig:df:relmean:run38996}225 \end{figure}226 227 228 \begin{figure}[htp]229 \centering230 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38993_RMSDiff.eps}231 \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm232 appied on a fixed window, and simply summing up the same number of FADC slices.233 Pedestal run234 with closed camera lids for inner (left) and outer (right) pixels. }235 \label{fig:df:relrms:run38993}236 \vspace{\floatsep}237 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38995_RMSDiff.eps}238 \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm239 appied on a fixed window, and simply summing up the same number of FADC slices.240 from pedestal run with extra-galactic star background for inner (left)241 and outer (right) pixels. }242 \label{fig:df:relrms:run38995}243 \vspace{\floatsep}244 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeDigitalFilter_Weights_cosmics_weights.dat_Range_01_14_02_14_Run_38996_RMSDiff.eps}245 \caption{MExtractTimeAndChargeDigitalFilter: Difference pedestal RMS (per FADC slice) with extraction algorithm246 appied on a fixed window, and simply summing up the same number of FADC slices.247 from run with continuous light level: 100 for inner (left)248 and outer (right) pixels. }249 \label{fig:df:relrms:run38996}250 \end{figure}251 252 253 \begin{figure}[htp]254 \centering255 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38993_Signal_Pixel200.eps}256 \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run257 with closed camera lids for one channel.}258 \label{fig:amp:distped:run38993}259 \vspace{\floatsep}260 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38995_Signal_Pixel200.eps}261 \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from pedestal run262 with extra-galactic star background for one channel.}263 \label{fig:amp:distped:run38995}264 \vspace{\floatsep}265 \includegraphics[height=0.29\textheight]{MExtractTimeAndChargeSpline_Amplitude_Range_00_10_04_11_Run_38996_Signal_Pixel200.eps}266 \caption{MExtractTimeAndChargeSpline with amplitude: Distribution of extracted "pedestals" from run with267 continuous light level: 100 for one channel.}268 \label{fig:amp:distped:run38996}269 \end{figure}270 271 \begin{figure}[htp]272 \centering273 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RelMean.eps}274 \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm275 appied on a fixed window, and simply summing up the same number of FADC slices.276 Pedestal run with closed camera lids.}277 \label{fig:amp:relmean:run38993}278 \vspace{\floatsep}279 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RelMean.eps}280 \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm281 appied on a fixed window, and simply summing up the same number of FADC slices282 Pedestal run with extra-galactic star background.}283 \label{fig:amp:relmean:run38995}284 \vspace{\floatsep}285 \includegraphics[height=0.27\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RelMean.eps}286 \caption{MExtractTimeAndChargeSpline with amplitude: Difference in mean pedestal (per FADC slice) with extraction algorithm287 appied on a fixed window, and simply summing up the same number of FADC slices.288 Pedestal run with continuous light level: 100}289 \label{fig:amp:relmean:run38996}290 \end{figure}291 292 293 \begin{figure}[htp]294 \centering295 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38993_RMSDiff.eps}296 \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction297 algorithm appied on a fixed window, and simply summing up the same number of FADC slices.298 Pedestal run299 with closed camera lids for inner (left) and outer (right) pixels. }300 \label{fig:amp:relrms:run38993}301 \vspace{\floatsep}302 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38995_RMSDiff.eps}303 \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction304 algorithm appied on a fixed window, and simply summing up the same number of FADC slices.305 Pedestal run with extra-galactic star background for inner (left)306 and outer (right) pixels.}307 \label{fig:amp:relrms:run38995}308 \vspace{\floatsep}309 \includegraphics[height=0.25\textheight]{MExtractTimeAndChargeSpline_Amplitude_Amplitude_Range_01_09_01_10_Run_38996_RMSDiff.eps}310 \caption{MExtractTimeAndChargeSpline with amplitude: Difference pedestal RMS (per FADC slice) with extraction311 algorithm appied on a fixed window, and simply summing up the same number of FADC slices.312 Pedestal run with continuous light level: 100 for inner (left)313 and outer (right) pixels.}314 \label{fig:amp:relrms:run38996}315 \end{figure}316 317 318 300 319 301 \begin{figure}[htp] … … 360 342 of Pedestal Events} 361 343 362 By applying the signal extractor to a sliding window of pedestal events, we 363 determine the bias $B$ and the error $R$. 364 \par 365 In MARS, this possibility is implemented with a function-call to 344 In this section, we apply the signal extractor to a sliding window of pedestal events. 345 \par 346 In MARS, this possibility can be used with a call to 366 347 {\textit{\bf MJPedestal::SetExtractionWithExtractor()}}. 348 \par 349 Because the background is determined by the single photo-electrons from the night-sky background, 350 the following possibilities can occur: 351 352 \begin{enumerate} 353 \item There is no ``signal'' (photo-electron) in the extraction window and the extractor 354 finds only electronic noise. 355 Usually, the returned signal charge is then negative. 356 \item The extractor finds the signal from one photo-electron 357 \item The extractor finds an overlap of two or more photo-electrons. 358 \end{enumerate} 359 360 Although the probability to find a certain number of photo-electrons in a fixed window follows a 361 Poisson distribution, the one for employing the sliding window is {\textit{not}} Poissonian. The extractor 362 will usually find one photo-electron even if more are present in the global search window, i.e. the 363 probability for two or more photo-electrons to occur in the global search window is much higher than 364 the probability for these photo-electrons to overlap in time such as to be recognized as a double 365 or triple photo-electron pulse by the extractor. This is especially true for small extraction windows 366 and for the digital filter. 367 368 \par 369 370 Given a global extraction window of size $WS$ and an average rate of photo-electrons from the night-sky 371 background $R$, we will now calculate the probability for the extractor to find zero photo-electrons in the 372 $WS$. The probability to find $k$ photo-electrons can be written as: 373 374 \begin{equation} 375 P(k) = \frac{e^{-R\cdot WS} (R \cdot WS)^k}{k!} 376 \end{equation} 377 378 and thus: 379 380 \begin{equation} 381 P(0) = e^{-R\cdot WS} 382 \end{equation} 383 384 The probability to find more than one photo-electron is then: 385 386 \begin{equation} 387 P(>0) = 1 - e^{-R\cdot WS} 388 \end{equation} 389 390 Figures~\ref{fig:sphe:sphespectrum:2.5} and~\ref{fig:sphe:sphespectrum:4.5} show spectra 391 obtained with the digital filter applied on two different global search windows. 392 One can clearly distinguish a pedestal peak (fitted to Gaussian with index 0), 393 corresponding to the case of $P(0)$ and further 394 contributions of $P(1)$ and $P(2)$ (fitted to Gaussians with index 1 and 2). 395 One can also see that the contribution of $P(0)$ dimishes 396 with increasing global search window size. 397 398 \begin{figure} 399 \centering 400 \includegraphics[height=0.3\textheight]{SinglePheSpectrum-28-Run38995-WS2.5.eps} 401 \caption{MExtractTimeAndChargeDigitalFilter: Signal spectrum obtained from the extraction 402 of a pedestal run using a sliding window of 6 FADC slices allowed to move within a window of 403 7 slices. 404 A pedestal run with galactic star background has been taken and one exemplary pixel (Nr. 100). 405 One can clearly see the pedestal contribution and a further part corresponding to one or more 406 photo-electrons.} 407 \label{fig:df:sphespectrum:2.5} 408 \vspace{\floatsep} 409 \includegraphics[height=0.3\textheight]{SinglePheSpectrum-28-Run38995-WS4.5.eps} 410 \caption{MExtractTimeAndChargeDigitalFilter: Signal spectrum obtained from the extraction 411 of a pedestal run using a sliding window of 6 FADC slices allowed to move within a window of 412 9 slices. 413 A pedestal run with galactic star background has been taken and one exemplary pixel (Nr. 100). 414 One can clearly see the pedestal contribution and a further part corresponding to one or more 415 photo-electrons.} 416 \label{fig:df:sphespectrum:4.5} 417 \end{figure} 418 419 In the following, we will make a short consistency test: Assuming that the spectral peaks are 420 attributed correctly, one would expect the following relation: 421 422 \begin{equation} 423 P(0) / P(>0) = \frac{e^{-R\cdot WS}}{1-e^{-R\cdot WS}} 424 \end{equation} 425 426 We tested this relation assuming that the fitted area underneath the pedestal peak $Area_0$ is 427 proportional to $P(0)$ and the sum of the fitted areas underneath the single photo-electron peak 428 $Area_1$ and the double photo-electron peak $Area_2$ proportional to $P(>0)$. Thus, one expects: 429 430 \begin{equation} 431 Area_0 / (Area_1 + Area+2 ) = \frac{e^{-R\cdot WS}}{1-e^{-R\cdot WS}} 432 \end{equation} 433 434 We estimated the effective window size $WS$ as the sum of the range in which the digital filter 435 amplitude weights are greater than 0.5 (1.6 FADC slices) and the global search window minus the 436 size of the window size of the weights (which is 6 FADC slices). Figures~\ref{fig::df:ratiofit:run38995} 437 and~\ref{fig:df:ratiofit:run39258} show the result for two different levels of night-sky background. 438 439 440 441 442 \par 367 443 368 444 \begin{figure}[htp]
Note:
See TracChangeset
for help on using the changeset viewer.