Ignore:
Timestamp:
02/19/05 21:19:08 (20 years ago)
Author:
gaug
Message:
*** empty log message ***
Location:
trunk/MagicSoft/TDAS-Extractor
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/MagicSoft/TDAS-Extractor/Calibration.tex

    r6631 r6635  
    727727in order to count how many times the extractor has failed to reconstruct the correct arrival time.
    728728\par
    729 Figure~\ref{fig:time:5ledsuv} shows the number of outliers for the different time extractors, obtained with
     729Figure~\ref{fig:timeunsuit:5ledsuv} shows the number of outliers for the different time extractors, obtained with
    730730a UV pulse of about 20 photo-electrons. One can see that all time extractors yield an acceptable mis-reconstruction
    731731rate of about 0.5\%, except for the maximum searching spline yields three times more mis-reconstructions.
    732732\par
    733 If one goes to very low-intensity pulses, as shown in figure~\ref{fig:time:1leduv}, obtained with on average 4 photo-electrons,
     733If one goes to very low-intensity pulses, as shown in figure~\ref{fig:timeunsuit:1leduv}, obtained with on average 4 photo-electrons,
    734734the number of mis-reconstructions increases considerably up to 20\% for some extractors. We interpret this high mis-reconstruction
    735735rate to the increase possibility to mis-reconstruct a pulse from the night sky background noise instead of the signal pulse from the
     
    737737in that respect.
    738738\par
    739 The same conclusion seems to hold for the green pulse of about 20 photo-electrons (figure~\ref{fig:time:2ledsgreen})
     739The same conclusion seems to hold for the green pulse of about 20 photo-electrons (figure~\ref{fig:timeunsuit:2ledsgreen})
    740740where the digital filter over 6 FADC slices seems to
    741741yield more stable results than the one over 4 FADC slices. The half-maximum searching spline seems to be superior to the maximum-searching
    742742one.
    743743\par
    744 In figure~\ref{fig:time:23ledsblue}, one can see the number of outliers from an intense calibration pulse of blue light yielding about
     744In figure~\ref{fig:timeunsuit:23ledsblue}, one can see the number of outliers from an intense calibration pulse of blue light yielding about
    745745600 photo-electrons per inner pixel. All extractors seem to be stable, except for the digital filter with weigths over 4 FADC slices. This
    746746is expected, since the low-gain pulse is wider than 4 FADC slices.
     
    757757for the outer pixels. Points
    758758denote the mean of all not-excluded pixels, the error bars their RMS.}
    759 \label{fig:time:5ledsuv}
     759\label{fig:timeunsuit:5ledsuv}
    760760\end{figure}
    761761
     
    769769for the outer pixels. Points
    770770denote the mean of all not-excluded pixels, the error bars their RMS.}
    771 \label{fig:time:1leduv}
     771\label{fig:timeunsuit:1leduv}
    772772\end{figure}
    773773
     
    780780for the outer pixels. Points
    781781denote the mean of all not-excluded pixels, the error bars their RMS.}
    782 \label{fig:time:2ledsgreen}
     782\label{fig:timeunsuit:2ledsgreen}
    783783\end{figure}
    784784
     
    791791for the outer pixels. Points
    792792denote the mean of all not-excluded pixels, the error bars their RMS.}
    793 \label{fig:time:23ledsblue}
     793\label{fig:timeunsuit:23ledsblue}
    794794\end{figure}
    795795
     
    803803
    804804\begin{enumerate}
    805 \item The intrinsic arrival time spread of the photons on the PMT. This time spread
    806 can be estimated roughly by the intrinsic width $\delta t_{\mathrm{LED}}$
    807 of the calibration pulses of about 2\,ns
    808 for the faster UV pulses and 3--4\,ns for the green and blue pulses. The resulting time
     805\item The intrinsic arrival time spread of the photons on the PMT: This time spread
     806can be estimated roughly by the intrinsic width $\delta t_{\mathrm{IN}}$ of the
     807input light pulse.
     808The resulting time
    809809resolution is given by:
    810810\begin{equation}
    811 \Delta t \approx \frac{\delta t_{\mathrm{LED}}}{\sqrt{Q/{\mathrm{phe}}}}
     811\Delta t \approx \frac{\delta t_{\mathrm{IN}}}{\sqrt{Q/{\mathrm{phe}}}}
    812812\end{equation}
    813 
    814 
    815 For our
    816 calibration LEDs this can be up to about 2 ns, for muons it is about a
    817 few hundreds of ps and for hadrons a few ns. The error of the mean
    818 arrival time of the total pulse is again the arrival time spread of the
    819 photons divided by the number of photo electrons.
    820 \item The intrinsic transit time spread TTS of the PMT. It can be in the order
    821 of a few hundreds of ps per single photo electron. When we reconstruct
    822 the mean pulse arrival time the error of the mean is given by the time
    823 spread per single photo electron dividid by the square root of number of
    824 photo electrons.
    825 \item reconstruction error due to noise and error of the numeric fit in
    826 case of the digital filter. In case of the digital filter the error for
    827 the standard noise level in the MC is about 2.7 ns divided by the signal
    828 in photo electrons.
     813The width $\delta t_{\mathrm{LED}}$ of the calibration pulses of about 2\,ns
     814for the faster UV pulses and 3--4\,ns for the green and blue pulses,
     815for muons it is a few hundred ps, for gammas about 1\,ns and for hadrons a few ns.
     816\item The intrinsic transit time spread $\mathrm{\it TTS}$ of the photo-multiplier:
     817It can be of the order of a few hundreds of ps per single photo electron, depending on the
     818wavelength of the incident light. As in the case of the photon arrival time spread, the total
     819time spread scales with the inverse of the square root of the number of photo-electrons:
     820\begin{equation}
     821\Delta t \approx \frac{\delta t_{\mathrm{TTS}}}{\sqrt{Q/{\mathrm{phe}}}}
     822\end{equation}
     823\item The reconstruction error due to the background noise: This contribution is proportional to the
     824signal to square root of background light intensities.
    829825\end{enumerate}
    830826
    831 All this seems to quite agree with the results obtained with the MC
    832 TestPulses. As 1) and 2) are proportional to one over the square root of
    833 the signal and 3 is proportional to one over the signal, for small
    834 pulses the noise determins the resolution, but for larger pulses the
    835 intrinsic fluctuations limit the timing resolution.
    836 
    837 When we get a time resolution of about 300 ps for calibration LED pulses
    838 we can not distinquish 1) and 2). Thus we have to wait for the exact
    839 measurement.
    840 
    841 
    842 \begin{figure}[htp]
    843 \centering
    844 \includegraphics[width=0.95\linewidth]{TimeResExtractor-5LedsUV-Colour-12.eps}
     827Additionally to these intrinsic and irreducible contributions to the timing resolutions, the limited precision of the
     828 extractors adds an additional time spread. In the following, we show measurements of the time resolutions at different
     829signal intensities in real conditions for the calibration pulses. These set upper limits to the time resolution for cosmics since their
     830intrinsic arrival time spread is smaller.
     831
     832Figures~\ref{fig:time:5ledsuv} through~\ref{fig:time:23ledsblue} show the measured time resolutions for very different calibration
     833pulse intensities and colours. One can see that the sliding window resolutions are always worse than the spline and digital filter
     834algorithms. Moreover, the half-maximum position search by the spline is always slightly better than the maximum position search. The
     835digital filter does not show notable differences with respect to the pulse form or the extraction window size, except for the low-gain
     836extraction where the 4 slices seem to yield a better resolution. This is only after excluding about 30\% of the events, as shown in
     837figure~\ref{fig:timeunsuit:23ledsblue}.
     838
     839\begin{figure}[htp]
     840\centering
     841\includegraphics[height=0.38\textheight]{TimeResExtractor-5LedsUV-Colour-12.eps}
    845842\caption{Reconstructed arrival time resolutions from a typical, not saturating calibration pulse
    846843of colour UV, reconstructed with each of the tested arrival time extractors.
     
    853850\begin{figure}[htp]
    854851\centering
    855 \includegraphics[width=0.95\linewidth]{TimeResExtractor-1LedUV-Colour-04.eps}
     852\includegraphics[height=0.38\textheight]{TimeResExtractor-1LedUV-Colour-04.eps}
    856853\caption{Reconstructed arrival time resolutions from the lowest intensity calibration pulse
    857854of colour UV (carrying a mean number of 4 photo-electrons),
     
    865862\begin{figure}[htp]
    866863\centering
    867 \includegraphics[width=0.95\linewidth]{TimeResExtractor-2LedsGreen-Colour-02.eps}
     864\includegraphics[height=0.38\textheight]{TimeResExtractor-2LedsGreen-Colour-02.eps}
    868865\caption{Reconstructed arrival time resolutions from a typical, not saturating calibration pulse
    869866of colour Green, reconstructed with each of the tested arrival time extractors.
     
    876873\begin{figure}[htp]
    877874\centering
    878 \includegraphics[width=0.95\linewidth]{TimeResExtractor-23LedsBlue-Colour-00.eps}
     875\includegraphics[height=0.38\textheight]{TimeResExtractor-23LedsBlue-Colour-00.eps}
    879876\caption{Reconstructed arrival time resolutions from the highest intensity calibration pulse
    880877of colour blue, reconstructed with each of the tested arrival time extractors.
     
    884881\label{fig:time:23ledsblue}
    885882\end{figure}
     883
     884\clearpage
    886885
    887886
     
    904903\end{figure}
    905904
     905\subsubsection{An Upper Limit for the Average Intrinsic Time Spread of the Photo-multipliers}
     906
     907
    906908
    907909\begin{figure}[htp]
  • trunk/MagicSoft/TDAS-Extractor/MonteCarlo.tex

    r6585 r6635  
    55\begin{figure}[htp]%%[t!]
    66\centering
    7   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps}
    8   \vspace{\floatsep}
    9   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps}
    10   \vspace{\floatsep}
    11   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps}
    12   \vspace{\floatsep}
    13   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
     7  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_HiGain.eps}
     8  \vspace{\floatsep}
     9  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_HiGain.eps}
     10  \vspace{\floatsep}
     11  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_NoNoise_LoGain.eps}
     12  \vspace{\floatsep}
     13  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
    1414\caption[Charge per Number of photo-electrons Fixed Windows]{Extracted charge per photoelectron versus number of photoelectrons,
    1515for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the
     
    2020\begin{figure}[htp]
    2121\centering
    22   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps}
    23   \vspace{\floatsep}
    24   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps}
    25   \vspace{\floatsep}
    26   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps}
    27   \vspace{\floatsep}
    28   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps}
     22  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_HiGain.eps}
     23  \vspace{\floatsep}
     24  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_HiGain.eps}
     25  \vspace{\floatsep}
     26  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_NoNoise_LoGain.eps}
     27  \vspace{\floatsep}
     28  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_SlidW_WithNoise_LoGain.eps}
    2929\caption[Charge per Number of photo-electrons Sliding Windows]{Extracted charge per photoelectron versus number of photoelectrons,
    3030for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the
     
    3535\begin{figure}[htp]
    3636\centering
    37   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps}
    38   \vspace{\floatsep}
    39   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps}
    40   \vspace{\floatsep}
    41   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps}
    42   \vspace{\floatsep}
    43   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps}
     37  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_HiGain.eps}
     38  \vspace{\floatsep}
     39  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_HiGain.eps}
     40  \vspace{\floatsep}
     41  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_NoNoise_LoGain.eps}
     42  \vspace{\floatsep}
     43  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_DFSpline_WithNoise_LoGain.eps}
    4444\caption[Charge per Number of photo-electrons Spline and Digital Filter]{Extracted charge per photoelectron versus number of photoelectrons,
    4545for spline and digital filter extractors in different window sizes. The top plots show the high-gain and the bottom ones show the
     
    5050\begin{figure}[htp]%%[t!]
    5151\centering
    52   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps}
    53   \vspace{\floatsep}
    54   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps}
    55   \vspace{\floatsep}
    56   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps}
    57   \vspace{\floatsep}
    58   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps}
    59   \includegraphics[width=0.49\linewidth]{TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
     52  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_HiGain.eps}
     53  \vspace{\floatsep}
     54  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_HiGain.eps}
     55  \vspace{\floatsep}
     56  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_NoNoise_LoGain.eps}
     57  \vspace{\floatsep}
     58  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_FixW_WithNoise_LoGain.eps}
     59  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeDivNphevsNphe_FixW_WithNoise_LoGain.eps}
    6060\caption[Bias Fixed Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
    6161versus number of photoelectrons,
     
    6767\begin{figure}[htp]
    6868\centering
    69   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps}
    70   \vspace{\floatsep}
    71   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps}
    72   \vspace{\floatsep}
    73   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps}
    74   \vspace{\floatsep}
    75   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps}
     69  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_HiGain.eps}
     70  \vspace{\floatsep}
     71  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_HiGain.eps}
     72  \vspace{\floatsep}
     73  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_NoNoise_LoGain.eps}
     74  \vspace{\floatsep}
     75  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_SlidW_WithNoise_LoGain.eps}
    7676\caption[Bias Sliding Windows]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
    7777versus number of photoelectrons,
     
    8383\begin{figure}[htp]
    8484\centering
    85   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps}
    86   \vspace{\floatsep}
    87   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps}
    88   \vspace{\floatsep}
    89   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps}
    90   \vspace{\floatsep}
    91   \includegraphics[width=0.49\linewidth]{TDAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps}
     85  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_HiGain.eps}
     86  \vspace{\floatsep}
     87  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_HiGain.eps}
     88  \vspace{\floatsep}
     89  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_NoNoise_LoGain.eps}
     90  \vspace{\floatsep}
     91  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ConversionvsNphe_DFSpline_WithNoise_LoGain.eps}
    9292\caption[Bias Spline and Digital Filter]{The measured bias (extracted charge divided by the conversion factor minus the number of photoelectrons)
    9393versus number of photoelectrons,
     
    9999\begin{figure}[htp]
    100100\centering
    101   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_FixW_NoNoise_HiGain.eps}
    102   \vspace{\floatsep}
    103   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_FixW_WithNoise_HiGain.eps}
    104   \vspace{\floatsep}
    105   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_FixW_NoNoise_LoGain.eps}
    106   \vspace{\floatsep}
    107   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_FixW_WithNoise_LoGain.eps}
     101  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_HiGain.eps}
     102  \vspace{\floatsep}
     103  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_HiGain.eps}
     104  \vspace{\floatsep}
     105  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_NoNoise_LoGain.eps}
     106  \vspace{\floatsep}
     107  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_FixW_WithNoise_LoGain.eps}
    108108\caption[Charge Resolution Fixed Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
    109109for fixed window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the
     
    114114\begin{figure}[htp]
    115115\centering
    116   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_SlidW_NoNoise_HiGain.eps}
    117   \vspace{\floatsep}
    118   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_SlidW_WithNoise_HiGain.eps}
    119   \vspace{\floatsep}
    120   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_SlidW_NoNoise_LoGain.eps}
    121   \vspace{\floatsep}
    122   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_SlidW_WithNoise_LoGain.eps}
     116  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_HiGain.eps}
     117  \vspace{\floatsep}
     118  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_HiGain.eps}
     119  \vspace{\floatsep}
     120  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_NoNoise_LoGain.eps}
     121  \vspace{\floatsep}
     122  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_SlidW_WithNoise_LoGain.eps}
    123123\caption[Charge Resolution Sliding Windows]{The measured resolution (RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
    124124for sliding window extractors in different window sizes. The top plots show the high-gain and the bottom ones show the
     
    129129\begin{figure}[htp]
    130130\centering
    131   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_DFSpline_NoNoise_HiGain.eps}
    132   \vspace{\floatsep}
    133   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_DFSpline_WithNoise_HiGain.eps}
    134   \vspace{\floatsep}
    135   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_DFSpline_NoNoise_LoGain.eps}
    136   \vspace{\floatsep}
    137   \includegraphics[width=0.49\linewidth]{TDAS_ChargeRes_DFSpline_WithNoise_LoGain.eps}
     131  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_HiGain.eps}
     132  \vspace{\floatsep}
     133  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_HiGain.eps}
     134  \vspace{\floatsep}
     135  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_NoNoise_LoGain.eps}
     136  \vspace{\floatsep}
     137  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_ChargeRes_DFSpline_WithNoise_LoGain.eps}
    138138\caption[Charge Resolution Spline and Digital Filter]{The measured resolution
    139139(RMS of extracted charge divided by the conversion factor minus the number of photoelectrons) versus number of photoelectrons,
     
    177177\begin{figure}[htp]%%[t!]
    178178\centering
    179   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_SlidW_NoNoise_HiGain.eps}
    180 \vspace{\floatsep}
    181   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_SlidW_WithNoise_HiGain.eps}
    182 \vspace{\floatsep}
    183   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_SlidW_NoNoise_LoGain.eps}
    184 \vspace{\floatsep}
    185   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_SlidW_WithNoise_LoGain.eps}
     179  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_HiGain.eps}
     180\vspace{\floatsep}
     181  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_HiGain.eps}
     182\vspace{\floatsep}
     183  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_NoNoise_LoGain.eps}
     184\vspace{\floatsep}
     185  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_SlidW_WithNoise_LoGain.eps}
    186186\caption[Time Resolution Sliding Windows]{The measured time resolution (RMS of extracted time minus simulated time)
    187187versus number of photoelectrons,
     
    193193\begin{figure}[htp]
    194194\centering
    195   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_DFSpline_NoNoise_HiGain.eps}
    196 \vspace{\floatsep}
    197   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_DFSpline_WithNoise_HiGain.eps}
    198 \vspace{\floatsep}
    199   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_DFSpline_NoNoise_LoGain.eps}
    200 \vspace{\floatsep}
    201   \includegraphics[width=0.49\linewidth]{TDAS_TimeRes_DFSpline_WithNoise_LoGain.eps}
     195  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_HiGain.eps}
     196\vspace{\floatsep}
     197  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_HiGain.eps}
     198\vspace{\floatsep}
     199  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_NoNoise_LoGain.eps}
     200\vspace{\floatsep}
     201  \includegraphics[width=0.49\linewidth]{TimeAndChargePlots/TDAS_TimeRes_DFSpline_WithNoise_LoGain.eps}
    202202\caption[Time Resolution Spline and Digital Filter]{The measured time resolution (RMS of extracted time minus simulated time)
    203203versus number of photoelectrons,
Note: See TracChangeset for help on using the changeset viewer.