Changes between Version 124 and Version 125 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/05/19 11:27:31 (6 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v124 v125 41 41 The contents of one energy bin \(\Delta E\) and one zenith angle bin \(\Delta\theta\) can then be written as 42 42 43 \[N(\Delta E, \Delta\theta) = \sum_{\Delta E}\sum_{\Delta\theta} \omega_{i,j}(E, \theta)= \sum_{\Delta E}\sum_{\Delta\theta} \omega_i(E)\cdot\omega_j(\theta)= \sum_{\Delta E} \omega_i( E)\cdot\sum_{\Delta\theta}\omega_i(\theta) \]43 \[N(\Delta E, \Delta\theta) = \sum_{\Delta E}\sum_{\Delta\theta} \omega_{i,j}(E, \theta)= \sum_{\Delta E}\sum_{\Delta\theta} \omega_i(E)\cdot\omega_j(\theta)= \sum_{\Delta E} \omega_i(\theta)\cdot\sum_{\Delta\theta}\omega_i(E) \] 44 44 45 45 and the normalization 46 46 47 \[\sum_E\sum_\theta N(E,\theta) = N_0 \sum_E\sum_\theta \omega_{i,j}(E,\theta) = N_0 \sum_E\sum_\theta \omega_{i}(E)\omega_j(\theta) = N_0\cdot \sum_E\omega_i( E)\cdot \sum_\theta\omega_i(\theta)\]47 \[\sum_E\sum_\theta N(E,\theta) = N_0 \sum_E\sum_\theta \omega_{i,j}(E,\theta) = N_0 \sum_E\sum_\theta \omega_{i}(E)\omega_j(\theta) = N_0\cdot \sum_E\omega_i(\theta)\cdot \sum_\theta\omega_i(E)\] 48 48 49 49