Changes between Version 134 and Version 135 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/05/19 14:22:07 (6 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v134 v135 91 91 N is the number of events in the energy interval \(E\in[E_\textrm{min};E_\textrm{max}]\) and the zenith angle interval \(\theta\in[\theta_\textrm{min};\theta_\textrm{max}]\) 92 92 93 \[N_0^\textrm{tot} = \sum_{i=0...N}^{E\in[E_\textrm{min};E_\textrm{max}]}\sum_{j=0...N}^{\theta\in[\theta_\textrm{min};\theta_\textrm{max}]} \omega_i(E_i)\cdot \omega_j(\theta_j)\] 93 \[N_0^\textrm{tot} = \sum_{i=0...N}^{E\in[E_\textrm{min};E_\textrm{max}]}\sum_{j=0...N}^{\theta\in[\theta_\textrm{min};\theta_\textrm{max}]} \omega(E_i, \theta_j)\] 94 95 Since \(\omega(E, \theta) = \omega_E(E)\cdot \omega_\theta(\theta) \) 96 97 \[N_0^\textrm{tot} = \sum_{i=0...N}^{E\in[E_\textrm{min};E_\textrm{max}]}\sum_{j=0...N}^{\theta\in[\theta_\textrm{min};\theta_\textrm{max}]} \omega_E(E_i)\cdot\omega_\theta(\theta_j)\] 98 94 99 95 100 \[N_0^\textrm{tot} = \sum_i^{[E_\textrm{min};E_\textrm{max}]}\sum_j^{[\theta_\textrm{min};\theta_\textrm{max}]} \sum_k^{[\Delta E_i]}\sum_m^{[\Delta \theta_j]} \omega_k(E_k)\cdot \omega_m(\theta_m)\] 96 101 97 \[\omega(E, \theta) = \omega_E(E)\cdot \omega_\theta(\theta) \]98 102 99 103