Changes between Version 136 and Version 137 of DatabaseBasedAnalysis/Spectrum


Ignore:
Timestamp:
12/05/19 14:26:40 (6 years ago)
Author:
tbretz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DatabaseBasedAnalysis/Spectrum

    v136 v137  
    8989
    9090
    91 N is the number of events in the energy interval \(E\in[E_\textrm{min};E_\textrm{max}]\) and the zenith angle interval \(\theta\in[\theta_\textrm{min};\theta_\textrm{max}]\)
    92 
    93 \[N_0^\textrm{tot} = \sum_{i=0...N}^{E\in[E_\textrm{min};E_\textrm{max}]}\sum_{j=0...N}^{\theta\in[\theta_\textrm{min};\theta_\textrm{max}]} \omega(E_i, \theta_j)\]
     91N is the number of events in the energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the zenith angle interval \(\theta\in\Delta\theta=[\theta_\textrm{min};\theta_\textrm{max}]\)
     92
     93\[N_0^\textrm{tot} = \sum_{i=0...N}^{E\in\Delta E}\sum_{j=0...N}^{\theta\in\Delta\theta} \omega(E_i, \theta_j)\]
    9494
    9595Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \)
    9696
    97 \[N_0^\textrm{tot} = \sum_{i=0...N}^{E\in[E_\textrm{min};E_\textrm{max}]}\sum_{j=0...N}^{\theta\in[\theta_\textrm{min};\theta_\textrm{max}]} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in[E_\textrm{min};E_\textrm{max}]}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in[\theta_\textrm{min};\theta_\textrm{max}]} \tau(\theta_j)\]
     97\[N_0^\textrm{tot} = \sum_{i=0...N}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\theta} \tau(\theta_j)\]
    9898
    9999