Changes between Version 138 and Version 139 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/05/19 14:28:55 (6 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v138 v139 89 89 90 90 91 N is the number of events in the energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the zenith angle interval \(\theta\in\Delta\theta=[\theta_\textrm{min};\theta_\textrm{max}]\) 92 93 \[N _0^\textrm{tot}= \sum_{i=0...N}^{E\in\Delta E}\sum_{j=0...N}^{\theta\in\Delta\theta} \omega(E_i, \theta_j)\]91 \(N\) is the number of produced events in the energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the zenith angle interval \(\theta\in\Delta\theta=[\theta_\textrm{min};\theta_\textrm{max}]\). The weightes number of events \(N'\) in that interval is then 92 93 \[N'(\Delta E, \Delta\theta) = \sum_{i=0...N}^{E\in\Delta E}\sum_{j=0...N}^{\theta\in\Delta\theta} \omega(E_i, \theta_j)\] 94 94 95 95 Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) 96 96 97 \[N _0^\textrm{tot}= \sum_{i=0...N}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\theta} \tau(\theta_j)\]97 \[N'(\Delta E, \Delta\theta) = \sum_{i=0...N}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\theta} \tau(\theta_j)\] 98 98 99 99