Changes between Version 142 and Version 143 of DatabaseBasedAnalysis/Spectrum


Ignore:
Timestamp:
12/05/19 14:41:09 (6 years ago)
Author:
tbretz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DatabaseBasedAnalysis/Spectrum

    v142 v143  
    8989
    9090
    91 \(N(\Delta E, \Delta\theta)\) is the number of produced events in the energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the zenith angle interval \(\theta\in\Delta\theta=[\theta_\textrm{min};\theta_\textrm{max}]\). The weighted number of events \(N'(\Delta E, \Delta\theta)\) in that interval is then
    92 
    93 \[N'(\Delta E, \Delta\theta) = \sum_{i=0...N}^{E\in\Delta E}\sum_{j=0...N}^{\theta\in\Delta\theta} \omega(E_i, \theta_j)\]
     91\(n(\delta E, \delta\theta)\) is the number of produced events in the energy interval \(E\in\delta E=[e_\textrm{min};e_\textrm{max}]\) and the zenith angle interval \(\theta\in\delta\theta=[\theta_\textrm{min};\theta_\textrm{max}]\). The weighted number of events \(n'(\delta E, \delta\theta)\) in that interval is then
     92
     93\[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\delta E}\sum_{j=0...n}^{\theta\in\delta\theta} \omega(E_i, \theta_j)\]
    9494
    9595Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) with \(\rho(E)\) the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and \(\tau(\theta)\) the weight to adapt to oberservation time versus zenith angle.
    9696
    97 \[N'(\Delta E, \Delta\theta) = \sum_{i=0...N}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\theta} \tau(\theta_j)\]
     97\[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\theta} \tau(\theta_j)\]
     98
     99The weighted number of produced events \(N'(\Delta E, \Delta\Theta)\) in the total energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the total zenith angle interval \(\theta\in\Delta\Theta=[\Theta_\textrm{min};\Theta_\textrm{max}]\) is then
     100
     101\[N'(\Delta E, \Delta\Theta) = \sum_{i=0...N}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\Theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\Theta} \tau(\theta_j)\]
     102
     103with \(N\) being the total number of produced events;
     104
     105
     106
     107
    98108
    99109