Changes between Version 143 and Version 144 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/05/19 14:42:14 (6 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v143 v144 95 95 Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) with \(\rho(E)\) the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and \(\tau(\theta)\) the weight to adapt to oberservation time versus zenith angle. 96 96 97 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\Delta}\sum_{j=0... N}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\theta} \tau(\theta_j)\]97 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\Delta}\sum_{j=0...n}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\Delta\theta} \tau(\theta_j)\] 98 98 99 99 The weighted number of produced events \(N'(\Delta E, \Delta\Theta)\) in the total energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the total zenith angle interval \(\theta\in\Delta\Theta=[\Theta_\textrm{min};\Theta_\textrm{max}]\) is then … … 101 101 \[N'(\Delta E, \Delta\Theta) = \sum_{i=0...N}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\Theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\Theta} \tau(\theta_j)\] 102 102 103 with \(N \) being the total number of produced events;103 with \(N(\Delta E, \Delta\Theta\) being the total number of produced events. 104 104 105 105