Changes between Version 143 and Version 144 of DatabaseBasedAnalysis/Spectrum


Ignore:
Timestamp:
12/05/19 14:42:14 (6 years ago)
Author:
tbretz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DatabaseBasedAnalysis/Spectrum

    v143 v144  
    9595Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) with \(\rho(E)\) the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and \(\tau(\theta)\) the weight to adapt to oberservation time versus zenith angle.
    9696
    97 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\theta} \tau(\theta_j)\]
     97\[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\Delta}\sum_{j=0...n}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\Delta\theta} \tau(\theta_j)\]
    9898
    9999The weighted number of produced events \(N'(\Delta E, \Delta\Theta)\) in the total energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the total zenith angle interval \(\theta\in\Delta\Theta=[\Theta_\textrm{min};\Theta_\textrm{max}]\) is then
     
    101101\[N'(\Delta E, \Delta\Theta) = \sum_{i=0...N}^{E\in\Delta}\sum_{j=0...N}^{\theta\in\Delta\Theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\Theta} \tau(\theta_j)\]
    102102
    103 with \(N\) being the total number of produced events;
     103with \(N(\Delta E, \Delta\Theta\) being the total number of produced events.
    104104
    105105