Changes between Version 144 and Version 145 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/05/19 14:44:37 (6 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v144 v145 95 95 Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) with \(\rho(E)\) the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and \(\tau(\theta)\) the weight to adapt to oberservation time versus zenith angle. 96 96 97 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\ Delta}\sum_{j=0...n}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\Delta\theta} \tau(\theta_j)\]97 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\delta E}\sum_{j=0...n}^{\theta\in\delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\delta\theta} \tau(\theta_j)\] 98 98 99 99 The weighted number of produced events \(N'(\Delta E, \Delta\Theta)\) in the total energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the total zenith angle interval \(\theta\in\Delta\Theta=[\Theta_\textrm{min};\Theta_\textrm{max}]\) is then