Changes between Version 144 and Version 145 of DatabaseBasedAnalysis/Spectrum


Ignore:
Timestamp:
12/05/19 14:44:37 (6 years ago)
Author:
tbretz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DatabaseBasedAnalysis/Spectrum

    v144 v145  
    9595Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) with \(\rho(E)\) the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and \(\tau(\theta)\) the weight to adapt to oberservation time versus zenith angle.
    9696
    97 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\Delta}\sum_{j=0...n}^{\theta\in\Delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\Delta\theta} \tau(\theta_j)\]
     97\[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\delta E}\sum_{j=0...n}^{\theta\in\delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\delta\theta} \tau(\theta_j)\]
    9898
    9999The weighted number of produced events \(N'(\Delta E, \Delta\Theta)\) in the total energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the total zenith angle interval \(\theta\in\Delta\Theta=[\Theta_\textrm{min};\Theta_\textrm{max}]\) is then