Changes between Version 158 and Version 159 of DatabaseBasedAnalysis/Spectrum


Ignore:
Timestamp:
12/05/19 15:55:41 (6 years ago)
Author:
tbretz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DatabaseBasedAnalysis/Spectrum

    v158 v159  
    8383=== Code ===
    8484
     85In the following \(N\) refers to a number of simulated events and \(M\) to a number of measured (excess) events.
     86
     87
     88\(n(\delta E, \delta\theta)\) is the number of produced events in the energy interval \(E\in\delta E=[e_\textrm{min};e_\textrm{max}]\) and the zenith angle interval \(\theta\in\delta\theta=[\theta_\textrm{min};\theta_\textrm{max}]\). The weighted number of events \(n'(\delta E, \delta\theta)\) in that interval is then
     89
     90\[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\delta E}\sum_{j=0...n}^{\theta\in\delta\theta} \omega(E_i, \theta_j)\]
     91
     92Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) with \(\rho(E)\) the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and \(\tau(\theta)\) the weight to adapt to oberservation time versus zenith angle.
     93
     94\[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\delta E}\sum_{j=0...n}^{\theta\in\delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\delta\theta} \tau(\theta_j)\]
     95
     96The weighted number of produced events \(N'(\Delta E, \Delta\Theta)\) in the total energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the total zenith angle interval \(\theta\in\Delta\Theta=[\Theta_\textrm{min};\Theta_\textrm{max}]\) is then
     97
     98\[N'(\Delta E, \Delta\Theta) = \sum_{i=0...N}^{E\in\Delta E}\sum_{j=0...N}^{\theta\in\Delta\Theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\Theta} \tau(\theta_j)\]
     99
     100with \(N(\Delta E, \Delta\Theta)\) being the total number of produced events.
     101
     102The weights are defined as follow:
     103
     104\[\rho(E) = \rho_0\frac{\phi_\textrm{src}(E)}{\phi_0(E)}\]
     105
     106where \(\phi_0(E)\) is the simulated spectrum and \(\phi_\textrm{src}\) the (unknown) real source spectrum. \(\rho_0\) is a normalization constant. The zenith angle weights \(\tau(\delta\theta)\) in the interval \(\delta\theta\) are defined as
     107
     108\[\tau(\delta\theta) = \tau_0\frac{\Delta T(\delta\theta)}{N(\delta\theta)}\]
     109
     110where \(N(\delta\theta)\) is the number of produced events in the interval \(\delta\theta\) and \(\Delta T(\delta\theta)\) is the total observation time in the same zenith angle interval. \(\tau_0\) is the normalization constant.
     111
     112As the efficiency \(\epsilon(\delta E)\) for an energy interval \(\delta E\) is calculated as
     113
     114\[\epsilon(\delta E) = \epsilon(\delta E, \Delta\Theta) = \frac{N'_\textrm{exc}(\delta E, \Delta\Theta)}{N'_\textrm{src}(\delta E,\Delta\Theta)}\]
     115
     116and \(N'_\textrm{exc}(\delta E,\Delta\Theta)\) and \(N'_\textrm{src}(\delta E,\Delta\Theta)\) are both expressed as the sum given above, the constants \(\rho_0\) and \(\tau_0\) cancel.
     117
     118The differential flux in an energy interval \(\delta E\) is then given as
     119
     120\[\phi(\delta E) = \phi(\delta E,\Delta\Theta) = \frac{1}{A_0\cdot \Delta T}\frac{M_\textrm{exc}(\delta E)}{\epsilon(\delta E)\cdot \delta E} = \frac{M_\textrm{exc}(E)}{N'_\textrm{exc}(E)}\cdot \frac{N_\textrm{src}(E)}{A_0\cdot\Delta T}\]
     121
     122
     123Where \(A_0\) is total area of production and \(\Delta T\) the total observation time. The number of measured excess events is in that energy interval is \(M_\textrm{exc}(\delta E)=M_\textrm{exc}(\delta E, \Delta\Theta)\).
     124
     125
     126
     127
     128
     129
     130
     131
     132=== Monte Carlo ===
     133
     134
    85135\[\omega_i(E) = \frac{\phi_\textrm{src}(E)}{\phi_0(E)}=\frac{E^{-\gamma}}{E^{-2.7}}\]
    86136
    87 \[\omega_i(\Delta \theta) = \frac{\sum_{\Delta\theta}\Delta T_i}{\sum_\theta\Delta T_i} \cdot \frac{N_0}{N_0(\Delta \theta)} \]
    88 
    89 
    90 
    91 \(n(\delta E, \delta\theta)\) is the number of produced events in the energy interval \(E\in\delta E=[e_\textrm{min};e_\textrm{max}]\) and the zenith angle interval \(\theta\in\delta\theta=[\theta_\textrm{min};\theta_\textrm{max}]\). The weighted number of events \(n'(\delta E, \delta\theta)\) in that interval is then
    92 
    93 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\delta E}\sum_{j=0...n}^{\theta\in\delta\theta} \omega(E_i, \theta_j)\]
    94 
    95 Since \(\omega(E, \theta) = \rho(E)\cdot \tau(\theta) \) with \(\rho(E)\) the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and \(\tau(\theta)\) the weight to adapt to oberservation time versus zenith angle.
    96 
    97 \[n'(\delta E, \delta\theta) = \sum_{i=0...n}^{E\in\delta E}\sum_{j=0...n}^{\theta\in\delta\theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...n}^{E\in\delta E}\rho(E_i)\cdot\sum_{j=0...n}^{\theta\in\delta\theta} \tau(\theta_j)\]
    98 
    99 The weighted number of produced events \(N'(\Delta E, \Delta\Theta)\) in the total energy interval \(E\in\Delta E=[E_\textrm{min};E_\textrm{max}]\) and the total zenith angle interval \(\theta\in\Delta\Theta=[\Theta_\textrm{min};\Theta_\textrm{max}]\) is then
    100 
    101 \[N'(\Delta E, \Delta\Theta) = \sum_{i=0...N}^{E\in\Delta E}\sum_{j=0...N}^{\theta\in\Delta\Theta} \rho(E_i)\cdot\tau(\theta_j) = \sum_{i=0...N}^{E\in\Delta E}\rho(E_i)\cdot\sum_{j=0...N}^{\theta\in\Delta\Theta} \tau(\theta_j)\]
    102 
    103 with \(N(\Delta E, \Delta\Theta)\) being the total number of produced events.
    104 
    105 The weights are defined as follow:
    106 
    107 \[\rho(E) = \rho_0\frac{\phi_\textrm{src}(E)}{\phi_0(E)}\]
    108 
    109 where \(\phi_0(E)\) is the simulated spectrum and \(\phi_\textrm{src}\) the (unknown) real source spectrum. \(\rho_0\) is a normalization constant. The zenith angle weights \(\tau(\delta\theta)\) in the interval \(\delta\theta\) are defined as
    110 
    111 \[\tau(\delta\theta) = \tau_0\frac{\Delta T(\delta\theta)}{N(\delta\theta)}\]
    112 
    113 where \(N(\delta\theta)\) is the number of produced events in the interval \(\delta\theta\) and \(\Delta T(\delta\theta)\) is the total observation time in the same zenith angle interval. \(\tau_0\) is the normalization constant.
    114 
    115 As the efficiency \(\epsilon(\delta E)\) for an energy interval \(\delta E\) is calculated as
    116 
    117 \[\epsilon(\delta E) = \epsilon(\delta E, \Delta\Theta) = \frac{N'_\textrm{exc}(\delta E, \Delta\Theta)}{N'_\textrm{src}(\delta E,\Delta\Theta)}\]
    118 
    119 and \(N'_\textrm{exc}(\delta E,\Delta\Theta)\) and \(N'_\textrm{src}(\delta E,\Delta\Theta)\) are both expressed as the sum given above, the constants \(\rho_0\) and \(\tau_0\) cancel.
    120 
    121 The differential flux in an energy interval \(\delta E\) is then given as
    122 
    123 \[\phi(\delta E) = \phi(\delta E,\Delta\Theta) = \frac{1}{A_0\cdot \Delta T}\frac{M_\textrm{exc}(\delta E)}{\epsilon(\delta E)\cdot \delta E}\]
    124 
    125 Where \(A_0\) is total area of production and \(\Delta T\) the total observation time. The number of measured excess events is in that energy interval is \(M_\textrm{exc}(\delta E)=M_\textrm{exc}(\delta E, \Delta\Theta)\).
    126 
    127 
    128 
    129 
    130 
    131 
    132 
    133 
    134 === Monte Carlo ===
     137\[\omega_i(\Delta \theta) = \frac{\sum_{\Delta\theta}\Delta T_i}{\sum_\theta\Delta T_i} \cdot \frac{M_0}{M_0(\Delta \theta)} \]
    135138
    136139\[\epsilon(E) = \frac{N_\textrm{exc}(E)}{N_0(E)}\]