Changes between Version 205 and Version 206 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/09/19 16:12:56 (6 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v205 v206 118 118 where \(N(\delta\theta)\) is the number of produced events in the interval \(\delta\theta\) and \(\Delta T(\delta\theta)\) is the total observation time in the same zenith angle interval. \(\tau_0\) is the normalization constant. 119 119 120 Assuming \(\sigma(\Delta T)=0\) gives 121 122 \[\sigma^2(\tau_i) = \left[\tau_0\frac{\Delta T_i^2}{N_i^2}\sigma(N_i)\right]^2= \left[\tau_0\frac{\Delta T_i^2}{N_i^2}\right]^2\cdot N_i\] 123 124 120 125 As the efficiency \(\epsilon(\delta E)\) for an energy interval \(\delta E\) is calculated as 121 126 … … 149 154 \[= \left(\frac{1}{A_0\cdot \Delta T\cdot\delta E\cdot N'_\textrm{exc}}\right)^2\cdot\left[\left(N'_\textrm{src}\right)^2\sigma^2(M_\textrm{exc}) + \left(\phi'\right)^2\sigma^2(N'_\textrm{exc}) + \left(M_\textrm{exc}\right)^2\sigma^2(N'_\textrm{src})\right]\] 150 155 151 152 153 154 \[\sigma^2(N') = \sum_m\left(\frac{dN'}{d\rho_m}\sigma(\rho_m)\right)^2+\sum_n\left(\frac{dN'}{d\tau_n}\sigma(\tau_n)\right)^2\]155 156 \[=\sum_m\left(\sum_j\tau(\theta_j)\sigma(\rho_m)\right)^2+\sum_n\left(\sum_i\rho(E_i)\sigma(\theta_n)\right)^2\]157 158 \[=\sum_m\sigma^2(\rho_m)\left(\sum_j\tau(\theta_j)\right)^2+\sum_n\sigma^2(\theta_n)\left(\sum_i\rho(E_i)\right)^2\]159 160 \[\sigma^2(\rho_m) = 0\]161 162 \[\sigma^2(\theta_n) = \frac{\tau_0^2\Delta T_n^2}{N_n^4}\sigma^2(N_n)= \frac{\tau_0^2\Delta T_n^2}{N_n^3}\]163 164 \[\sigma^2(N') = \tau_0^2\left(\sum_{n\in\Delta\Theta}\frac{\Delta T_n^2}{N_n^3}\right)\left(\sum_{i\in\delta E}\rho(E_i)\right)^2\]165 166 156 === Monte Carlo === 167 157