Changes between Version 210 and Version 211 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/09/19 16:25:56 (6 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v210 v211 118 118 where \(N(\delta\theta)\) is the number of produced events in the interval \(\delta\theta\) and \(\Delta T(\delta\theta)\) is the total observation time in the same zenith angle interval. \(\tau_0\) is the normalization constant. 119 119 120 \[\sigma^2(\tau_i) = \left[\frac{d\tau_i}{d\Delta T_i}\sigma(\Delta T_i)\right]^2+\left[\frac{d\tau_i}{dN_i}\sigma(N_i)\right]^2=\left[\frac{\tau_0}{N_i}\sigma(\Delta T_i)\right]^2+\left[\frac{\tau_0\cdot\Delta T_i}{N_i^2}\sigma(N_i)\right]^2= \left[\frac{\tau_0\cdot\Delta T_i}{N_i^2}\right]^2\cdot N_i\] 121 120 \[\sigma^2(\tau_i) = \left[\frac{d\tau_i}{d\Delta T_i}\sigma(\Delta T_i)\right]^2+\left[\frac{d\tau_i}{dN_i}\sigma(N_i)\right]^2=\left[\frac{\tau_0}{N_i}\sigma(\Delta T_i)\right]^2+\left[\frac{\tau_0\cdot\Delta T_i}{N_i^2}\sigma(N_i)\right]^2\] 121 122 While \(\sigma(\Delta T_i)\) is given by the data acquisition and 1s per run, \(sigma^2(N_i)=N_i\) is just the statistical error \(\sqrt{N_i}\) of the number of events event counting. 122 123 123 124 As the efficiency \(\epsilon(\delta E)\) for an energy interval \(\delta E\) is calculated as … … 130 131 131 132 \[\phi(\delta E) = \phi(\delta E,\Delta\Theta) = \frac{1}{A_0\cdot \Delta T}\frac{M_\textrm{exc}(\delta E)}{\epsilon(\delta E)\cdot \delta E} = \frac{M_\textrm{exc}(\delta E)}{N'_\textrm{exc}(\delta E)}\cdot \frac{N'_\textrm{src}(\delta E)}{A_0\cdot\Delta T\cdot \delta E}\] 133 132 134 133 135