Changes between Version 227 and Version 228 of DatabaseBasedAnalysis/Spectrum


Ignore:
Timestamp:
12/09/19 18:02:53 (5 years ago)
Author:
tbretz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DatabaseBasedAnalysis/Spectrum

    v227 v228  
    7676\[\sigma^2(N_\textrm{sig,bg}) = \sum_i\left[\frac{\sum_j d\omega_j}{d\omega_i}\sigma(\omega_i)\right]^2 = \sum_i\sigma^2(\omega_i)\]
    7777
    78 <!--With the error \(\sigma^2(\omega_i) = \omega_i^2\) this provides
    79 \[\sigma^2(N_\textrm{exc}^\textrm{MC}) = \sum_\textrm{sig}\omega_i^2 + \frac{1}{5^2}\sum_\textrm{bg}\omega_i^2 \]
    80 -->
    81 
     78\[\sigma^2(N_\textrm{exc}) = \sigma^2(N_\textrm{sig}) + \frac{1}{5^2}\sigma^2(N_\textrm{bg})\}
    8279
    8380=== Code ===
     
    146143\[\rightarrow\quad\sigma^2(\phi) = \phi^2 \cdot\left[\left(\frac{\sigma(M_\textrm{exc})}{M_\textrm{exc} }\right)^2 + \left(\frac{\sigma(N'_\textrm{exc})}{N'_\textrm{exc}}\right)^2 + \left(\frac{\sigma(N'_\textrm{src})}{N'_\textrm{src}}\right)^2\right]\]
    147144
    148 == Test ==
    149 
    150 xxxx
    151 
    152 \[\frac{d\phi'}{dM_\textrm{exc}} = \frac{N'_\textrm{src}}{N'_\textrm{exc}}\]
    153 \[\frac{d\phi'}{dN'_\textrm{exc}} = -\frac{M_\textrm{exc}\cdot N'_\textrm{src}}{\left(N'_\textrm{exc}\right)^2}\]
    154 \[\frac{d\phi'}{dN'_\textrm{src}} = \frac{M_\textrm{exc}}{N'_\textrm{exc}}\]
    155 
    156 
    157 \[\sigma^2(\phi) = \left(\frac{1}{A_0\cdot \Delta T\cdot\delta E}\right)^2\cdot\left[\left(\frac{N'_\textrm{src}}{N'_\textrm{exc}}\right)^2\sigma^2(M_\textrm{exc}) + \left(\frac{M_\textrm{exc}\cdot N'_\textrm{src}}{(N'_\textrm{exc})^2}\right)^2\sigma^2(N'_\textrm{exc}) + \left(\frac{M_\textrm{exc}}{N'_\textrm{exc}}\right)^2\sigma^2(N'_\textrm{src})\right]\]
    158 
    159 
    160 \[= \left(\frac{1}{A_0\cdot \Delta T\cdot\delta E\cdot N'_\textrm{exc}}\right)^2\cdot\left[\left(N'_\textrm{src}\right)^2\sigma^2(M_\textrm{exc}) + \left(\phi'\right)^2\sigma^2(N'_\textrm{exc}) + \left(M_\textrm{exc}\right)^2\sigma^2(N'_\textrm{src})\right]\]
    161 
    162 === Monte Carlo ===
    163 
    164 
    165 \[\omega_i(E) = \frac{\phi_\textrm{src}(E)}{\phi_0(E)}=\frac{E^{-\gamma}}{E^{-2.7}}\]
    166 
    167 \[\omega_i(\Delta \theta) = \frac{\sum_{\Delta\theta}\Delta T_i}{\sum_\theta\Delta T_i} \cdot \frac{M_0}{M_0(\Delta \theta)} \]
    168 
    169 \[\epsilon(E) = \frac{N_\textrm{exc}(E)}{N_0(E)}\]
    170 
    171 \[\phi(E) = \frac{N_\textrm{exc}(E)}{A_\epsilon(E)\cdot\Delta T} = \frac{N_\textrm{exc}(E)}{N_\textrm{exc}^\textrm{MC}(E)}\cdot \frac{N_0(E)}{A_0\cdot\Delta T}\]
    172 
    173 
    174 \[\phi(E) = \frac{N_\textrm{sig}(E) - \hat N_\textrm{bg}(E)}{N_\textrm{sig}^\textrm{MC}(E) - \hat N_\textrm{bg}^\textrm{MC}(E)}\cdot \frac{N_0(E)}{A_0\cdot\Delta T}\]
    175 
    176 
    177 \[N_\textrm{sig}^\textrm{MC} = \sum_\textrm{sig}^\textrm{MC}\omega_i(E)\omega_i(\theta)\]
    178 \[N_\textrm{bg}^\textrm{MC} = \sum_\textrm{bg}^\textrm{MC}\omega_i(E)\omega_i(\theta)\]
    179 \[N_0(E) = \sum_\textrm{corsika}^\textrm{MC}\omega_i(E)\omega_i(\theta)\]
    180 
    181 
    182 \[\sigma^2(\phi(E)) = \left(\frac{d\phi(E)}{dN_0}\right)^2\sigma^2(N_0) + \left(\frac{d\phi(E)}{dN_\textrm{exc}^\textrm{MC}}\right)^2\sigma^2(N_\textrm{exc}^\textrm{MC}) +  \left(\frac{d\phi(E)}{dN_\textrm{exc}}\right)^2\sigma(N_\textrm{exc})^2\]
    183 
    184 \[\sigma^2(N_0) = \sum_\textrm{corsika}\omega_i^2(E)\omega_i^2(\theta)\]
    185 
    186 \[\sigma^2(N_\textrm{exc}^\textrm{MC}) =  \left(\frac{dN_\textrm{exc}^\textrm{MC}}{dN_\textrm{sig}^\textrm{MC}}\right)^2\sigma^2(N_\textrm{sig}^\textrm{MC}) +  \left(\frac{dN_\textrm{exc}^\textrm{MC}}{d\hat N_\textrm{bg}^\textrm{MC}}\right)^2\sigma^2(\hat N_\textrm{bg}^\textrm{MC}) \]
    187 
    188 
    189 \[\sigma^2(N_\textrm{sig}) = N_\textrm{sig}\]
    190 
    191 \[\sigma^2(\hat N_\textrm{bg}) = \frac{1}{5^2}\sigma^2(N_\textrm{bg}) = \frac{1}{5^2} N_\textrm{bg}\]
    192 
    193 \[\sigma^2(N_\textrm{sig}^\textrm{MC}) = \sum_\textrm{sig}^\textrm{MC}\omega^2_i(E)\omega^2_i(\theta)\]
    194 
    195 \[\sigma^2(\hat N_\textrm{bg}^\textrm{MC}) = \frac{1}{5^2}\sigma^2(N_\textrm{bg}^\textrm{MC}) = \frac{1}{5^2}\sum_\textrm{bg}^\textrm{MC}\omega^2_i(E)\omega^2_i(\theta)\]
    196 
    197 
    198 \[\frac{dN_\textrm{exc}}{dN_\textrm{sig}}=1\]
    199 \[\frac{dN_\textrm{exc}}{d\hat N_\textrm{bg}}=1\]
    200 
    201 == Errors ==
    202 
    203 
    204 
    205 === Theta and Spectral Weights ===
    206 
    207 While the source spectrum \(N_0\) is of course independent of the zenith angle \(\theta\) of the observation, the efficiency is not, so that
    208 
    209 \[\epsilon(E) = \epsilon(E, \theta)\]
    210 
    211 In addition, the observed differential flux depends on the zenith angle, so that
    212 
    213 \[\epsilon(E, \theta) = \epsilon(E, \theta, \Delta T(\theta))\]
    214 
    215 That means that for a correct calculation of the efficiency, the number of simulated events per zenith angle interval has to match the observation time distribution. This can be achieved by applying zenith angle dependent weights \(\omega(\theta)\) to each simulated event. Similarly, the discussed requirement of the match between result spectrum and simulated spectrum can be achieved applying energy dependent weights \(\omega(E)\).
    216 
    217 As the simulated energy spectrum is independent of zenith angle, it can be expressed as
    218 
    219 \[N_0(E,\theta) = N_0\cdot \fract{\eta(E)}{\int_E\eta(E)dE}\cdot \fract{\eta(\theta)}{\int_\theta\eta(\theta)d\theta}\]
    220 
    221 with the differential energy spectrum \(\eta(E)\) and the zenith angle distribution \(\eta(\theta)\).
    222 
    223 
    224 
    225 \[dN_0(E,\theta) = N_0\cdot d\eta(E)\cdot d\eta(\theta)\]
    226 
    227 
    228 
    229 \[N_0 = \int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}} dN_0(E,\theta) = N_0\int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(E) dE \cdot \eta(\theta) d\theta= N_0\int_{E_\textrm{min}}^{E_\textrm{max}}\eta(E) dE\cdot \int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(\theta) d\theta\]
    230 
    231 consequently
    232 
    233 \[\int_{E_\textrm{min}}^{E_\textrm{max}}\eta(E) dE = \int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(\theta) d\theta = 1\]
    234 
    235 or
    236 
    237 \[N_0 = N_0\cdot \sum_{E_\textrm{min}}^{E_\textrm{max}}\omega_i(E) \cdot \sum_{\theta_\textrm{min}}^{\theta_\textrm{max}}\omega_i(\theta)\]
    238 
    239 with
    240 
    241 \[\sum_{E_\textrm{min}}^{E_\textrm{max}}\omega_i(E) =\sum_{\theta_\textrm{min}}^{\theta_\textrm{max}}\omega_i(\theta) = 1\]
    242 
    243 
    244 
    245 
    246 \[\int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(E)\eta(\theta) dE d\theta =\int_{E_\textrm{min}}^{E_\textrm{max}}\eta(E) dE = \int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(\theta) d\theta = 1\]
    247 
    248 and \(N_0\) the total number of generated Monte Carlo events. For the generated number of events \(n_0\) in the energy interval \(\Delta E=E_\textrm{max}-E_\textrm{min}\) and zenith angle interval \(\Delta \theta=\theta_\textrm{max}-\theta_\textrm{min}\) this is
    249 
    250 \[n_0(\Delta E) = \frac{\sum_{\Delta E}\sum_{\theta_\textrm{min}}^{\theta_\textrm{max}} \omega_i(E)\cdot\omega_i(\theta)}{\sum_{E}\sum_{\theta} \omega_i(E)\omega_i(\theta)}\]
    251 
    252 \[n_0(\Delta E) = \frac{\sum_{\Delta E}\sum_{\theta_\textrm{min}}^{\theta_\textrm{max}} \omega_i(E)\cdot\omega_i(\theta)}{\sum_{\Delta E}\sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E) \cdot \sum_{\Delta \theta}\sum_{\theta_\textrm{min}}^{\theta_\textrm{max}} \omega_i(\theta)}\]
    253 
    254 with the weights chosen such that the sum over all intervals
    255 
    256 \[\sum_{\Delta E}\sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E)=\sum_{\Delta \theta}\sum_{\theta_\textrm{min}}^{\theta_\textrm{max}} \omega_i(\theta)=1\]
    257 
    258 
    259145
    260146== Define Binnings ==