# Changes between Version 38 and Version 39 of DatabaseBasedAnalysis/Spectrum

Ignore:
Timestamp:
Dec 3, 2019, 6:14:08 PM (10 months ago)
Comment:

--

### Legend:

Unmodified
 v38 $\int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(E)\eta(\theta) dE d\theta =\int_{E_\textrm{min}}^{E_\textrm{max}}\eta(E) dE = \int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(\theta) d\theta = 1$ and $$N_0$$ the total number of generated Monte Carlo events. For the generated number of events $$n_0$$ in the energy interval $$\Delta E=E_\textrm{max}-E_\textrm{min}$$ this is and $$N_0$$ the total number of generated Monte Carlo events. For the generated number of events $$n_0$$ in the energy interval $$\Delta E=E_\textrm{max}-E_\textrm{min}$$ and zenith angle interval $$\Delta \theta=\theta_\textrm{max}-\theta_\textrm{min}$$ this is $n_0(\Delta E) = \sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E)\cdot\omega_i(\theta)$ $n_0(\Delta E) = \frac{\sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E)\cdot\omega_i(\theta)}{\sum_{\Delta E}\sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E) \cdot \sum_{\Delta \theta}\sum_{\theta_\textrm{min}}^{\theta_\textrm{max}} \omega_i(\theta)}$ with the weights chosen such that the sum over all intervals