Changes between Version 38 and Version 39 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/03/19 18:14:08 (5 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v38 v39 50 50 \[\int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(E)\eta(\theta) dE d\theta =\int_{E_\textrm{min}}^{E_\textrm{max}}\eta(E) dE = \int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(\theta) d\theta = 1\] 51 51 52 and \(N_0\) the total number of generated Monte Carlo events. For the generated number of events \(n_0\) in the energy interval \(\Delta E=E_\textrm{max}-E_\textrm{min}\) this is52 and \(N_0\) the total number of generated Monte Carlo events. For the generated number of events \(n_0\) in the energy interval \(\Delta E=E_\textrm{max}-E_\textrm{min}\) and zenith angle interval \(\Delta \theta=\theta_\textrm{max}-\theta_\textrm{min}\) this is 53 53 54 \[n_0(\Delta E) = \ sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E)\cdot\omega_i(\theta)\]54 \[n_0(\Delta E) = \frac{\sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E)\cdot\omega_i(\theta)}{\sum_{\Delta E}\sum_{E_\textrm{min}}^{E_\textrm{max}} \omega_i(E) \cdot \sum_{\Delta \theta}\sum_{\theta_\textrm{min}}^{\theta_\textrm{max}} \omega_i(\theta)}\] 55 55 56 56 with the weights chosen such that the sum over all intervals