Changes between Version 50 and Version 51 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/03/19 19:09:02 (5 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v50 v51 44 44 As the simulated energy spectrum is independent of zenith angle, it can be expressed as 45 45 46 \[dN_0 '(E,\theta) = N_0\cdot d\eta(E)\cdot d\eta(\theta)\]46 \[dN_0(E,\theta) = N_0\cdot d\eta(E)\cdot d\eta(\theta)\] 47 47 48 48 with the differential energy spectrum \(\eta(E)\) and the zenith angle distribution \(\eta(\theta)\), for the total production range \(E_\textrm{min}\) to \(E_\textrm{max}\) and \(\theta_\textrm{min}\) to \(\theta_\textrm{max}\) … … 50 50 51 51 52 \[N_0 '= \int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}} dN_0(E,\theta) = N_0\int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(E) dE \cdot \eta(\theta) d\theta= N_0\int_{E_\textrm{min}}^{E_\textrm{max}}\eta(E) dE\cdot \int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(\theta) d\theta\]52 \[N_0 = \int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}} dN_0(E,\theta) = N_0\int_{E_\textrm{min}}^{E_\textrm{max}}\int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(E) dE \cdot \eta(\theta) d\theta= N_0\int_{E_\textrm{min}}^{E_\textrm{max}}\eta(E) dE\cdot \int_{\theta_\textrm{min}}^{\theta_\textrm{max}}\eta(\theta) d\theta\] 53 53 54 54 consequently … … 58 58 or 59 59 60 \[N_0 '= N_0\cdot \sum_{E_\textrm{min}}^{E_\textrm{max}}\omega_i(E) \cdot \sum_{\theta_\textrm{min}}^{\theta_\textrm{max}}\omega_i(\theta)\]60 \[N_0 = N_0\cdot \sum_{E_\textrm{min}}^{E_\textrm{max}}\omega_i(E) \cdot \sum_{\theta_\textrm{min}}^{\theta_\textrm{max}}\omega_i(\theta)\] 61 61 62 62 with