# Changes between Version 60 and Version 61 of DatabaseBasedAnalysis/Spectrum

Ignore:
Timestamp:
Dec 3, 2019, 10:44:24 PM (10 months ago)
Comment:

--

### Legend:

Unmodified
 v60 $\sigma^2(\phi(E)) = \left(\frac{d\phi(E)}{dN_0}\right)\sigma^2(N_0) + \left(\frac{d\phi(E)}{dN_\textrm{exc}^\textrm{MC}}\right)\sigma^2(N_\textrm{exc}^\textrm{MC}) + \left(\frac{d\phi(E)}{dN_\textrm{exc}}\right)^2\sigma(N_\textrm{exc})^2$ $\sigma^2(N_0) = \sum_\textrm{corsika}\omega_i^2(E)\omega_i^2(\theta)$ $\sigma^2(N_\textrm{exc}^\textrm{MC}) = \left(\frac{d\phi(E)}{dN_\textrm{sig}^\textrm{MC}}\right)\sigma^2(N_\textrm{sig}^\textrm{MC}) + \left(\frac{d\phi(E)}{d\hat N_\textrm{bg}^\textrm{MC}}\right)\sigma^2(\hat N_\textrm{bg}^\textrm{MC})$ $\sigma^2(N_\textrm{exc}) = \left(\frac{d\phi(E)}{dN_\textrm{sig}}\right)\sigma^2(N_\textrm{sig}) + \left(\frac{d\phi(E)}{d\hat N_\textrm{bg}}\right)\sigma^2(\hat N_\textrm{bg})$ $\sigma^2(N_\textrm{sig} = N_\textrm{sig}$ $\sigma^2(\hat N_\textrm{bg} = \frac{1}{5^2}\sigma^2(N_\textrm{bg} = \frac{1}{5^2} N_\textrm{bg}$ $\sigma^2(N_\textrm{sig}^\textrm{MC} =$ $\sigma^2(\hat N_\textrm{bg}^\textrm{MC} = \frac{1}{5^2}\sigma^2(N_\textrm{bg}^\textrm{MC} =$